Reviews

Disruptive technologies in aviation: Preliminary study

  • Huitao FAN ,
  • Pengfei DUAN ,
  • Cheng YUAN
Expand
  • 1.Aviation Industry Corporation of China,Ltd. ,Beijing 100027,China
    2.AVIC Future Airborne Weapon Technology Collaborative Innovation Center,Beijing 100029,China
    3.Institute of Artificial Intelligence,Beihang University,Beijing 100191,China
E-mail: s2u7j1w0@163.com

Received date: 2023-11-20

  Revised date: 2023-11-22

  Accepted date: 2023-11-23

  Online published: 2023-12-01

Abstract

Disruptive technologies, with their innovative and destructive characteristics, have been leading the transformation of human mode of life and combat operations, and also playing an important role in the rise and fall of major powers and civilization evolution. In the history of aviation, numerous disruptive technologies have emerged to replace the previous technologies, profoundly influencing the process of aviation and shaping the basic pattern of today's air combat and civil aviation transportation. The world is currently at the crossroads of a new round of industrial and military revolution, and whether it is possible to identify, research, and industrialize various disruptive technologies including those in the aviation field is crucial for reshaping the future social form and military landscape. This article briefly illustrates the understanding of disruptive technologies from the aspects of concept, three significant characteristics, and identification and acquisition. The important influence of disruptive technologies on the previous three industrial revolutions is discussed, the significant changes brought by five typical aviation disruptive technologies in history presented, the important trend of the high-energy and intelligent compound development of aviation science and technology in the future analyzed, nine possible disruptive technologies and potential impacts in the four fields of material manufacturing, energy power, information electronics and cross-integration predicted, and suggestions for the development of disruptive technologies in aviation proposed. We expect that more future disruptive technologies in aviation will be initiated and developed by Chinese people.

Cite this article

Huitao FAN , Pengfei DUAN , Cheng YUAN . Disruptive technologies in aviation: Preliminary study[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529893 -529893 . DOI: 10.7527/S1000-6893.2023.29893

References

1 钟文丽, 赵金辉, 杨筱. 推进颠覆性技术发展是大国博弈的战略选择[J]. 国防科技201839(5): 43-47.
  ZHONG W L, ZHAO J H, YANG X. Promoting disruptive technology development is a strategic choice for big powers[J]. Defense Technology Review201839(5): 43-47 (in Chinese).
2 曲冠楠, 陈凯华, 陈劲. 颠覆性技术创新:理论源起、整合框架与发展前瞻[J]. 科研管理202344(9): 1-9.
  QU G N, CHEN K H, CHEN J. Disruptive technovation: origins, integrated framework, and prospects[J]. Science Research Management202344(9): 1-9 (in Chinese).
3 刘安蓉, 李莉, 曹晓阳, 等. 颠覆性技术概念的战略内涵及政策启示[J]. 中国工程科学201820(6): 7-13.
  LIU A R, LI L, CAO X Y, et al. The strategic connotation and policy enlightenment of the concept of disruptive technology[J]. Strategic Study of CAE201820(6): 7-13 (in Chinese).
4 苏鹏, 苏成, 潘云涛. 颠覆性技术识别方法发展现状及启示[J]. 图书情报工作201963(20): 129-138.
  SU P, SU C, PAN Y T. Overview and considerations on disruptive technology identification method[J]. Library and Information Service201963(20): 129-138 (in Chinese).
5 荆象新, 锁兴文, 耿义峰. 颠覆性技术发展综述及若干启示[J]. 国防科技201536(3): 11-13.
  JING X X, SUO X W, GENG Y F. Review and revelation on disruptive technology development[J]. National Defense Science & Technology201536(3): 11-13 (in Chinese).
6 王志勇, 党晓玲, 刘长利, 等. 颠覆性技术的基本特征与国外研究的主要做法[J]. 国防科技201536(3): 14-17, 22.
  WANG Z Y, DANG X L, LIU C L, et al. Characteristics of disruptive technology and international research survey[J]. National Defense Science & Technology201536(3): 14-17, 22 (in Chinese).
7 王超, 许海云, 方曙. 颠覆性技术识别与预测方法研究进展[J]. 科技进步与对策201835(9): 152-160.
  WANG C, XU H Y, FANG S. Progress of approaches for identification and forecasting of disruptive technologies[J]. Science & Technology Progress and Policy201835(9): 152-160 (in Chinese).
8 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究201533(5): 654-664.
  HUANG L C, CHENG Y, WU F F, et al. Study on identification framework of disruptive technology[J]. Studies in Science of Science201533(5): 654-664 (in Chinese).
9 宁朝山. 工业革命演进与新旧动能转换: 基于历史与逻辑视角的分析[J]. 宏观经济管理2019(11): 18-27.
  NING C S. The evolution of the industrial revolution and replacing old growth drivers with new ones—an analysis from the historical and logical perspective[J]. Macroeconomic Management2019(11): 18-27 (in Chinese).
10 龚淑林. 美国第二次工业革命及其影响[J]. 南昌大学学报(人文社会科学版)198819(1): 67-74, 101.
  GONG S L. The second American industrial revolution and its influence[J]. Journal of Nanchang University (Social Science)198819(1): 67-74, 101 (in Chinese).
11 游翰霖, 陈方舟, 成清. 从大国博弈视角解读与应对第三次抵消战略[J]. 国防科技201738(4): 88-93.
  YOU H L, CHEN F Z, CHENG Q. Understanding and coping with the Third Offset Strategy from the perspective of superpower games[J]. National Defense Science & Technology201738(4): 88-93 (in Chinese).
12 刘一鸣, 石海明. 技术制胜: 美军第三次“抵消战略” 评析[J]. 指挥与控制学报20162(2): 167-171.
  LIU Y M, SHI H M. Technology subduing: analysis of the U.S. third “offset strategy”[J]. Journal of Command and Control20162(2): 167-171 (in Chinese).
13 程不时. 创造了“王牌飞行员” 的机枪协调器[J]. 航空知识2006(6): 60.
  CHENG B S. Created the machine Gun coordinator of the “Ace Pilot”[J]. Aerospace Knowledge2006(6): 60 (in Chinese).
14 杨树谦. 精确制导技术发展现状与展望[J]. 航天控制200422(4): 17-20.
  YANG S Q. Development and prospect of PGM technology[J]. Aerospace Control200422(4): 17-20 (in Chinese).
15 梁薇, 张科. 精确制导武器发展及其关键技术[J]. 火力与指挥控制200833(12): 5-7, 12.
  LIANG W, ZHANG K. Development and key technologies of precise-guidance weapon[J]. Fire Control and Command Control200833(12): 5-7, 12 (in Chinese).
16 朱长征. 飞机的隐身技术现状及发展趋势[J]. 航天电子对抗200117(6): 42-45.
  ZHU C Z. Present situation and development trend of stealth technology of aircraft[J]. Aerospace Electronic Warfare200117(6): 42-45 (in Chinese).
17 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报202243(10): 527397.
  FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527397 (in Chinese).
18 陈辛, 张俊宝. 空战模式演变与隐身空战形态发展分析[J]. 航空兵器202229(3): 1-7.
  CHEN X, ZHANG J B. Analysis on the evolution of air combat mode and the development of stealth air combat form[J]. Aero Weaponry202229(3): 1-7 (in Chinese).
19 樊会涛, 张蓬蓬. 空空导弹面临的挑战[J]. 航空兵器201724(2): 3-7.
  FAN H T, ZHANG P P. The challenges for air-to-air missile[J]. Aero Weaponry201724(2): 3-7 (in Chinese).
20 梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器201623(4): 3-10.
  LIANG X G, TIAN H L. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry201623(4): 3-10 (in Chinese).
21 鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器201926(5): 26-31.
  XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry201926(5): 26-31 (in Chinese).
22 刘代军, 王超磊. 空空导弹智能化技术的发展与展望[J]. 航空兵器201926(1): 25-29.
  LIU D J, WANG C L. Development and prospect of air-to-air missile intelligentization[J]. Aero Weaponry201926(1): 25-29 (in Chinese).
23 程运江, 张程, 赵日, 等. 人工智能的发展及其在未来战争中的影响与应用思考[J]. 航空兵器201926(1): 58-62.
  CHENG Y J, ZHANG C, ZHAO R, et al. Development of artificial intelligence and thoughts on its influence and application in the future war[J]. Aero Weaponry201926(1): 58-62 (in Chinese).
24 乔绅. 超材料与带状线相结合的高Q滤波结构设计[J]. 航空兵器202027(3): 79-82.
  QIAO S. Design of high-Q filter structure based on combination of metamaterial and strip line[J]. Aero Weaponry202027(3): 79-82 (in Chinese).
25 郭正玉, 毕冉, 马征峥, 等. 智能隐身材料在空空导弹结构设计中的应用展望[J]. 航空兵器202330(2): 21-30.
  GUO Z Y, BI R, MA Z Z, et al. Application prospect of intelligent stealth materials in air-to-air missile structure design[J]. Aero Weaponry202330(2): 21-30 (in Chinese).
26 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报202237(10): 2046-2058.
  CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power202237(10): 2046-2058 (in Chinese).
27 TRIMBLE S. DARPA aims gambit missile project at fourth-gen fighters [EB/OL]. (2022-08)[2023-11-20]. .
28 刘艳鹏, 龚安民, 丁鹏, 等. 基于言语想象的脑机交互关键技术[J]. 生物医学工程学杂志202239(3): 596-611.
  LIU Y P, GONG A M, DING P, et al. Key technology of brain-computer interaction based on speech imagery[J]. Journal of Biomedical Engineering202239(3): 596-611 (in Chinese).
29 魏士松. 基于脑-机接口的飞行器虚拟现实模拟驾驶系统研究[D]. 南京: 南京航空航天大学, 2021.
  WEI S S. Research on virtual reality simulation driving system of aircraft based on brain-computer interface[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
30 李茜. 2022高超声速技术进展[J]. 航空动力2023(1): 15-18.
  LI Q. Progress of hypersonic technology in 2022[J]. Aerospace Power2023(1): 15-18 (in Chinese).
31 陈龙, 宋庆国, 廖孟豪. 国防领域航空颠覆性技术识别[J]. 航空科学技术202233(5): 37-43.
  CHEN L, SONG Q G, LIAO M H. Identifying disruptive technologies in military aviation for defense[J]. Aeronautical Science & Technology202233(5): 37-43 (in Chinese).
32 赵鸿燕, 周丽. 国外高功率微波武器发展研究[J]. 航空兵器202330(4): 42-48.
  ZHAO H Y, ZHOU L. Research on the development of high-power microwave weapon abroad[J]. Aero Weaponry202330(4): 42-48 (in Chinese).
33 范晋祥, 陈晶华. 美军机载武器的新发展[J]. 航空兵器202027(5): 13-22.
  FAN J X, CHEN J H. New development of American airborne weapons[J]. Aero Weaponry202027(5): 13-22 (in Chinese).
34 吴涛涛, 王茜, 武晓龙. 定向能武器在无人化战争中的制胜机理及运用特点[J]. 国防科技202243(5): 137-142.
  WU T T, WANG Q, WU X L. Winning mechanism and application characteristics of directed energy weapons in unmanned warfare[J]. National Defense Technology202243(5): 137-142 (in Chinese).
Outlines

/