ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Lightweight design of space trusses considering joint parameterization
Received date: 2023-09-10
Revised date: 2023-10-12
Accepted date: 2023-10-24
Online published: 2023-12-01
Supported by
National Key Research and Development Program of China(2022YFB3402200);National Natural Science Foundation of China(92271205)
A layout optimization method of connecting beams considering joints parametric modeling is proposed. The parametric modeling process is based on axis angle and size. The geometric characteristics of the tubular joints are determined by the mutual position and size of the connected beams. The parametric modeling of the joint finite element model is realized by converting the mutual position into the axis angle of the joints and the size into the joint head and branch pipe size. The spatial position of the joint structure can be determined by the axis intersection transformed from the spatial positions of the connected beams. In conclusion, the finite element model of the joint can be embedded, and the finite element model of the whole trusses structure can be established. The Bayesian method based on Gaussian process is used to optimize the layout of the trusses connecting beams, and the manufacturing difficulty is considered and the concrete design scheme is given. Numerical examples show that the optimization method can effectively improve the natural frequency of the structure.
Key words: layout optimization; joint design; trusses; new spacecraft; Bayesian method
Ruitong ZHANG , Lei WANG , Jiajia LIU , Jihong ZHU . Lightweight design of space trusses considering joint parameterization[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529715 -529715 . DOI: 10.7527/S1000-6893.2023.29715
1 | RAPINETT A. Zephyr: A high altitude long endurance unmanned air vehicle[D]. London: University of Surrey. 2009: 31-74 |
2 | ROMEO G, FRULLA G, CESTINO E, et al. HELIPLAT: Design, aerodynamic, structural analysis of long- endurance solar-powered stratospheric platform[J]. Journal of Aircraft, 2004, 41(6): 1505-1520. |
3 | SHARMA V, KESHAVA K S. Aero-elastic Analysis Of High Aspect Ratio UAV wing—based on two-way fluid structure interaction[J]. Lecture Notes in Mechanical Engineering, 2021, 53: 37-58. |
4 | SALEEM M, GOPI E, RAMESH K R. Fabrication of solar energy UAV[J]. International Journal of Ambient Energy, 2018, 41(1): 74-79. |
5 | 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. |
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). | |
6 | 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020, 41(3): 623414. |
WU J F, WANG H L, HUANG Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623414 (in Chinese). | |
7 | 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): 1-7. |
ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 1-7 (in Chinese). | |
8 | 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机分层协同设计及分析[J]. 航空学报, 2016, 37(1): 163-178. |
GAN W B, ZHOU Z, XU X Q. Multilevel collaboration design and analysis of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 163-178 (in Chinese). | |
9 | 高广林, 李占科, 宋笔锋, 等. 太阳能无人机关键技术分析[J]. 飞行力学, 2010(1): 1-4. |
GAO G L, LI Z K, SONG B F, et al. Key technologies of solar powered unmanned air vehicle[J]. Flight Dynamics, 2010(1): 1-4 (in Chinese). | |
10 | NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap[R]. American NASA Headquarters, 2004. |
11 | KITAMURA T, YAMASHIRO K, OBATA A, et al. Development of a high stiffness extendible and retractable mast'HIMAT'for space applications[C]∥ 31st Structures, Structural Dynamics and Materials Conference. 1990: 572. |
12 | KITAMURA T, OKAZAKI K, NATORI M, et al. Development of a hingeless mast and its applications[J]. Acta Astronautica, 1988, 17(3): 341-346. |
13 | LI P, LIU C, TIAN Q, et al. Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11(4): 041017. |
14 | 李培, 马沁巍, 宋燕平, 等. 大型空间环形桁架天线反射器展开动力学模拟与实验研究[J]. 中国科学:物理学 力学 天文学, 2017, 47(10): 7-15. |
LI P, MA Q W, SONG Y P, et al. Deployment dynamics simulation and ground test of a large space hoop truss antenna reflector[J]. Scientia Sinica: Physica, Mechanica et Astronomica, 2017, 47(10): 7-15 (in Chinese). | |
15 | 王明明, 罗建军, 袁建平, 等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 523913. |
WANG M M, LUO J J, YUAN J P, et al. In-orbit assembly technology: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523913 (in Chinese). | |
16 | VENKATESH V T, SARKAR S, MONDAL G. Buckling restrained sizing and shape optimization of truss structures[J]. Journal of Structural Engineering, 2020, 146(5): 04020048. |
17 | WELDEYESUS A G, GONDZIO J, HE L, et al. Adaptive solution of truss layout optimization problems with global stability constraints[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 2093-2111. |
18 | FAKHIMI R, SHAHABSAFA M, LEI W, et al. Discrete multi-load truss sizing optimization: model analysis and computational experiments[J]. Optimization and Engineering, 2021, 23(3): 1559-1585. |
19 | LU H, XIE Y M. Reducing the number of different members in truss layout optimization[J]. Structural and Multidisciplinary Optimization, 2023, 66(3): 1-16. |
20 | QIU J, FAN Y, WEI H, et al. Lightweight design of aircraft truss based on topology and size optimization[J]. Journal of Physics: Conference Series, 2021, 1986(1): 1-6. |
21 | WU Q, ZHOU Q, XIONG X, et al. Layout and sizing optimization of discrete truss based on continuum[J]. International Journal of Steel Structures, 2017, 17(1): 43-51. |
22 | LIEU Q X. A novel topology framework for simultaneous topology, size and shape optimization of trusses under static, free vibration and transient behavior[J]. Engineering with Computers, 2022, 38(6): 1-25. |
23 | WEI P, MA H, WANG M Y. The stiffness spreading method for layout optimization of truss structures[J]. Structural and Multidisciplinary Optimization, 2013, 49(4): 667-682. |
24 | ?ILIH S, KRAVANJA S, PREMROV M. Shape and discrete sizing optimization of timber trusses by considering of joint flexibility[J]. Advances in Engineering Software, 2010, 41(2): 286-294. |
25 | MELLAERT V R, LOMBAERT G, SCHEVENELS M. Global size optimization of statically determinate trusses considering displacement, member, and joint constraints[C]∥ IASS 2015 Amsterdam Symposium: Future Visions – Engineering. 2015:1-12. |
26 | MORTAZAVI A. Size and layout optimization of truss structures with dynamic constraints using the interactive fuzzy search algorithm[J]. Engineering Optimization, 2020, 53(3): 369-391. |
27 | ZINKOVA V A. Optimization of the structure of flat metal tube trusses[J]. Lecture Notes in Civil Engineering, 2020, 95: 213-218. |
28 | 熊波. 全碳纤维复合材料桁架制备与可靠性分析方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
XIONG B. Research on fabrication and reliability analysis methods of all carbon fibre composite truss[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
29 | WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: a review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480. |
30 | WANG C, ZHU J, WU M, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398. |
31 | XIONG B, LUO X, TAN H. Multi-scale analysis of all-composite truss considering joint effects[J]. Engineering Mechanics, 2015, 32(8): 229-235. |
32 | JU S, JIANG D Z, SHENOI R A, et al. Flexural properties of lightweight FRP composite truss structures[J]. Journal of Composite Materials, 2011, 45(19): 1921-1930. |
33 | 鞠苏. 复合材料桁架弯曲特性与非线性约束优化设计[D]. 长沙: 国防科学技术大学, 2011. |
JU S. Flexural performance and design optimization with nonlinear constraints of a composite truss structure[D]. Changsha: National University of Defense Technology, 2011 (in Chinese). | |
34 | 鞠苏, 曾竟成, 江大志, 等. 复合材料桁架接头研究进展[J]. 材料导报, 2006, 20(12): 28-31. |
JU S, ZENG J Z, JIANG D Z, et al. Study progress in composite truss-joint[J]. Materials Reports, 2006, 20(12): 28-31 (in Chinese). | |
35 | UOZUMI T, KITO A. Carbon fibre-reinforced plastic truss structures for satellite using braiding/resin transfer moulding process[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2007, 221(2): 93-101. |
36 | 钱钧, 肖军, 李勇. 构架式卫星接头自动铺丝的建模研究[J]. 纤维复合材料, 2002, 19(2): 3-5. |
QIAN J, XIAO J, LI Y. Research on the modeling of the satellite triangle conjunction of frame in automated fibre placement[J]. Fiber Composites, 2002, 19(2): 3-5 (in Chinese). | |
37 | 杨红娜. 铺层-模压法碳/环氧桁架接头的成型工艺研究[J]. 航天返回与遥感, 2003, 24(4): 44-48. |
YANG H N. Technic studies of carbon/epoxy truss-structute joints made by moulding-press technology[J]. Spacecraft Recovery & Remote Sensing | Spacecraft Recov Remot Sens, 2003, 24(4): 44-48 (in Chinese). | |
38 | JAMISON L, SOMMER G S, PORCHE I I. High-altitude airships for the future force army[M]. Santa Monic: Rand, 2005: 8-14. |
39 | 南波. 半硬式平流层飞艇骨架精细化分析与轻量化设计[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
NAN B. Refined analysis and light-wight design of semi-rigid stratospheric airship frame structuresr[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). | |
40 | 李东旭, 刘望, 王杰, 等. 一种桁架式全挠性航天器结构平台: CN109573101A [P]. 2019-4-5. |
LI D X, LIU W, WANG J, et al. The utility model relates to a truss type fully flexible spacecraft structural platform: CN109573101A [P]. 2019-4-5 (in Chinese). | |
41 | 郝树萌. 圆管相贯线焊接机器人结构设计及其控制系统研究[D]. 淄博: 山东理工大学, 2018. |
HAO S M. Research on mechanism design and control system of circular pipe intersecting line welding robot[D]. Zibo: Shandong University of Technology, 2018 (in Chinese). | |
42 | 季忠,刘韧. 管管相交数学模型及其在数控加工中的应用[J]. 工程图学学报, 2002(2): 139-144. |
JI Z, LIU R. Numerical model of intersected pipes and its application on NC machining[J]. Journal of Engineering Graphics, 2002(2): 139-144 (in Chinese). | |
43 | 聂海峰. 基于终生学习机制的贝叶斯优化算法研究[D]. 成都: 电子科技大学, 2023. |
NIE H F. The Bayesian optimization algorithm based on lifelong learning mechanism[D]. Chengdu: University of Electronic Science and Technology of China (in Chinese). |
/
〈 |
|
〉 |