Articles

Lattice structure optimization design under harmonic base acceleration excitations

  • Li CHEN ,
  • Xiaoyun ZENG ,
  • Wen HUANG ,
  • Jianfei ZHANG
Expand
  • Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621900,China
E-mail: zxy_666666@qq.com

Received date: 2023-10-11

  Revised date: 2023-10-24

  Accepted date: 2023-11-02

  Online published: 2023-12-01

Abstract

Aerospace products face an increasingly violent vibration environment, and at the same time, higher lightweight requirements are put forward for structural design. Aiming at the problem of structural vibration suppression under simple harmonic base acceleration excitation, this paper proposes an optimization method to reduce the dynamic response of the structure by optimizing the cross-sectional size of the lattice structural members based on the lightweight lattice structure with high specific strength and specific stiffness. Taking the cross-sectional size of the lattice structural members as the design variable and the structural volume as the constraint, an optimization mathematical model with the smallest displacement response at the key points of the structure under simple harmonic base acceleration excitation is established as the optimization goal. The modal displacement method is used to efficiently solve the dynamic response and sensitivity of the structure, and the optimization problem is solved by the GCMMA optimization algorithm. Numerical examples and vibration experiments show that the lattice structure optimization method proposed in this paper can greatly reduce the vibration response of the structure while ensuring the lightweight structure.

Cite this article

Li CHEN , Xiaoyun ZENG , Wen HUANG , Jianfei ZHANG . Lattice structure optimization design under harmonic base acceleration excitations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529704 -529704 . DOI: 10.7527/S1000-6893.2023.29704

References

1 ZHANG X Y, ZHOU H, SHI W H, et al. Vibration tests of 3D printed satellite structure made of lattice sandwich panels[J]. AIAA Journal201856(10): 4213-4217.
2 ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics201932(7): 1727-1732.
3 SIGMUND O. Materials with prescribed constitutive parameters: an inverse homogenization problem[J]. International Journal of Solids and Structures199431(17): 2313-2329.
4 WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization201858(1): 35-50.
5 WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization202061(3): 869-894.
6 WU Z J, XIA L, WANG S T, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering2019345(1): 602-617.
7 WU T, LI S. An efficient multiscale optimization method for conformal lattice materials[J]. Structural and Multidisciplinary Optimization202063(3): 1063-1083.
8 ZHOU H, ZHU J H, WANG C, et al. Hierarchical structure optimization with parameterized lattice and multiscale finite element method[J]. Structural and Multidisciplinary Optimization202265(1): 39.
9 XIAO M, LIU X L, ZHANG Y, et al. Design of graded lattice sandwich structures by multiscale topology optimization[J]. Computer Methods in Applied Mechanics and Engineering2021384(1): 113949.
10 VICENTE W M, ZUO Z H, PAVANELLO R, et al. Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures[J]. Computer Methods in Applied Mechanics and Engineering2016301(1): 116-136.
11 ZHANG Y, XIAO M, GAO L, ET AL. Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures[J]. Mechanical Systems and Signal Processing2020135: 106369.
12 TANG Y L, KURTZ A, ZHAO Y F. Bidirectional evolutionary structural optimization (BESO) based design method for lattice structure to be fabricated by additive manufacturing[J]. Computer-aided Design201569(1): 91-101.
13 CHEN W J, ZHENG X N, LIU S T. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing[J]. Materials201811(11): 2073.
14 TERRIAULT P, BRAILOVSKI V. Modeling and simulation of large, conformal, porosity-graded and lightweight lattice structures made by additive manufacturing[J]. Finite Elements in Analysis and Design2018138(1): 1-11.
15 ZHOU K M. Topology optimization of truss-like continuum structures for natural frequencies[J]. Structural and Multidisciplinary Optimization201347(4): 613-619.
16 ZHOU K M, LI X. Topology optimization of truss-like continua with three families of members model under stress constraints[J]. Structural and Multidisciplinary Optimization201043(4): 487-493.
17 ZHOU M, ROZVANY G I N. DCOC: An optimality criteria method for large systems part I: theory[J]. Structural Optimization19925(1): 12-25.
18 STOLPE M. Truss optimization with discrete design variables: a critical review[J]. Structural and Multidisciplinary Optimization201653(2): 349-374.
19 LéGER P, IDé I M, PAULTRE P. Multiple-support seismic analysis of large structures[J]. Computers and Structures199036(6): 1153-1158.
20 MAN L, D.G GORMAN. Formulation of Rayleigh damping and its extensions[J]. Computers and Structures199557(2): 277-285.
21 ZHU J H, HE F, LIU T, et al. Structural topology optimization under harmonic base acceleration excitations[J]. Structural and Multidisciplinary Optimization201857(3): 1061-1078.
22 CLOUGH R W, PENZIEN J, GRIFFIN D S. 结构动力学[M]. 陈嘉炜,译. 台北:科技图书股份有限公司,1981:271-284
  CLOUGH R W, PENZIEN J, GRIFFIN D S. Dynamics of structures[M]. CHEN J W, translated. Taipei: Technology Books Co. Ltd. , 1981:271-284 (in Chinese)
23 OJALVO I U. Efficient computation of mode-shape derivatives for large dynamic systems[J]. AIAA Journal198725(10): 1386-1390.
24 ALVIN K F. Efficient computation of eigenvector sensitivities for structural dynamics[J]. AIAA Journal199735(11): 1760-1766.
25 OLHOFF N, DU J. Topological design of continuum structures subjected to forced vibration[C]∥ Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization. 2005: 1-8.
26 LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization201551(6): 1321-1333.
Outlines

/