Fluid Mechanics and Flight Mechanics

New method for detonation initiation induced by curved shock wave

  • Haochen XIONG ,
  • Ruofan QIU ,
  • Xin HAN ,
  • Hao YAN ,
  • Tao ZHANG ,
  • Yancheng YOU
Expand
  • School of Aerospace Engineering,Xiamen University,Xiamen 361102,China

Received date: 2023-10-07

  Revised date: 2023-10-23

  Accepted date: 2023-11-14

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(U21B6003);Natural Science Foundation of Fujian Province(2020J05019)

Abstract

Oblique wedge initiation is the predominant initiation mode for oblique detonation waves. While increasing the angle of the oblique wedge accelerates detonation, it also raises the overdrive degree of the detonation wave and the resistance within the combustion chamber. To simultaneously ensure rapid detonation initiation and combustion performance, we present the S-shaped wall initiation method, making full use of the flexibility of the curved shock wave system. Concave wall compression facilitates detonation initiation, while convex wall expansion mitigates the overdrive degree of the detonation wave. Given that the expansion wave affecting the initiation zone could lead to detonation wave extinguishment, precise adjustment of the turning point for the S-shaped wall initiation method becomes crucial. Thus, employing the method of curved-shock characteristics, we present a calculation approach to determining the initiation position of curved detonation, to establish the turning point of the S-shaped curved wall in a rational manner. Findings reveal that the optimized S-shaped wall initiation scheme leads to a 16.5% increase in average thrust potential gain and an 8.3% enhancement in the average total pressure recovery coefficient.

Cite this article

Haochen XIONG , Ruofan QIU , Xin HAN , Hao YAN , Tao ZHANG , Yancheng YOU . New method for detonation initiation induced by curved shock wave[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 129682 -129682 . DOI: 10.7527/S1000-6893.2023.29682

References

1 姜宗林. 气体爆轰物理及其统一框架理论[M]. 北京: 科学出版社, 2020: 161-168.
  JIANG Z L. Gaseous detonation physics and its universal framework theory[M]. Beijing: Science Press, 2020: 161-168 (in Chinese).
2 LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008.
3 ALEXANDER D C, SISLIAN J P, PARENT B. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets[J]. AIAA Journal200644(10): 2145-2155.
4 刘卫东, 彭皓阳, 刘世杰, 等. 旋转爆震燃烧及应用研究进展[J]. 航空学报202344(15): 528875.
  LIU W D, PENG H Y, LIU S J, et al. Research Progresses of rotating detonation combustion and its application[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528875 (in Chinese).
5 陈嘉豪, 张义宁, 杨晖, 等. 斜爆震发动机进气道与燃烧室一体化设计仿真研究[J]. 推进技术201839(9): 1938-1947.
  CHEN J H, ZHANG Y N, YANG H, et al. Numerical simulation on integrated design inlet and combustion chamber of oblique detonation engine[J]. Journal of Propulsion Technology201839(9): 1938-1947 (in Chinese).
6 ASHFORD S A, EMANUEL G. Oblique detonation wave engine performance prediction[J]. Journal of Propulsion and Power199612(2): 322-327.
7 SISLIAN J P, SCHIRMER H, DUDEBOUT R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power200117(3): 599-604.
8 HIGGINS A J. Ram accelerators: Outstanding issues and new directions[J]. Journal of Propulsion and Power200622(6): 1170-1187.
9 ROSATO D A, THORNTON M, SOSA J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(20): e2102244118.
10 杨理, 岳连捷, 张新宇. 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报202041(11): 123701.
  YANG L, YUE L J, ZHANG X Y. Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave[J]. Acta Aeronautica et Astronautica Sinica202041(11): 123701 (in Chinese).
11 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学: 物理学 力学 天文学202050(9): 129-151.
  TENG H H, YANG P F, ZHANG Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 202050(9): 129-151 (in Chinese).
12 BACHMAN C L, GOODWIN G B. Ignition criteria and the effect of boundary layers on wedge-stabilized oblique detonation waves[J]. Combustion and Flame2021223: 271-283.
13 WANG T, ZHANG Y N, TENG H H, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture[J]. Physics of Fluids201527(9): 096101.
14 CAI X D, LIANG J H, LIN Z Y, et al. Adaptive mesh refinement–based numerical simulation of detonation initiation in supersonic combustible mixtures using a hot jet[J]. Journal of Aerospace Engineering201528(1): 04014046.
15 LI H B, LI J L, XIONG C, et al. Investigation of hot jet on active control of oblique detonation waves[J]. Chinese Journal of Aeronautics202033(3): 861-869.
16 YAO J Y, LIN Z Y. Numerical investigation of jet-wedge combinatorial initiation for oblique detonation wave in supersonic premixed mixture[J]. Physics of Fluids202335(2): 026101.
17 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展202050: 202002.
  TENG H H, JIANG Z L. Progress in multi-wave structure and stability of oblique detonations[J]. Advances in Mechanics202050: 202002 (in Chinese).
18 YANG P F, TENG H H, JIANG Z L, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame2018193: 246-256.
19 IWATA K, NAKAYA S, TSUE M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute201736(2): 2761-2769.
20 XIANG G X, LI H Y, CAO R H, et al. Study of the features of oblique detonation induced by a finite wedge in hydrogen-air mixtures with varying equivalence ratios[J]. Fuel2020264: 116854.
21 REN Z X, WANG B. Transition of oblique detonation wave in a two-phase hydrocarbon-air mixture[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
22 GUO H B, ZHAO N B, YANG H L, et al. Analysis on stationary window of oblique detonation wave in methane-air mixture[J]. Aerospace Science and Technology2021118: 107038.
23 PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power19917(20): 837-845.
24 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报201463(20): 225-232.
  LIU Y, ZHOU J, LIN Z Y. Ramp-induced oblique detonation wave with an incoming boudary layer effect[J]. Acta Physica Sinica201463(20): 225-232 (in Chinese).
25 LI C P, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks[J]. Physics of Fluids19946(4): 1600-1611.
26 韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法[J]. 力学学报202254(3): 633-643.
  HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets[J]. Chinese Journal of Theoretical and Applied Mechanics202254(3): 633-643 (in Chinese).
27 韩信, 张文硕, 张子健, 等. 鼓包诱导斜爆震波的数值研究[J]. 推进技术202243(5): 190-201.
  HAN X, ZHANG W S, ZHANG Z J, et al. Numerical study of oblique detonation waves induced by a bump[J]. Journal of Propulsion Technology202243(5): 190-201 (in Chinese).
28 ZHANG Y C, XIANG G X, YU J, et al. Accelerated initiation of oblique detonation induced by disturbance in detonative zone[J]. Chinese Journal of Aeronautics202336(11): 153-164.
29 XIANG G X, ZHANG Y C, GAO X, et al. Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures[J]. Fuel2021295: 120615.
30 YANG L, YUE L J, ZHANG Q F. Onset of oblique detonation waves for a cavity-based wedge[J]. AIAA Journal202260(5): 2836-2849.
31 TENG H H, ZHANG Y H, YANG P F, et al. Oblique detonation wave triggered by a double wedge in hypersonic flow[J]. Chinese Journal of Aeronautics202235(4): 176-184.
32 MENEES P. Analytical and experimental investigations of the oblique detonation wave engine concept: NASA-TM-102839[R]. Washington, D.C.: NASA, 1991.
33 王爱峰. 驻定斜爆轰的机理研究及其在高超推进中的应用探索[D]. 北京: 中国科学院, 2011.
  WANG A F. Study on mechanism of stationary oblique detonation and its application in hypersonic propulsion[D]. Beijing: University of Chinese Academy of Sciences, 2011 (in Chinese).
34 杨鹏飞, 张子健, 杨瑞鑫, 等. 斜爆轰发动机的推力性能理论分析[J]. 力学学报202153(10): 2853-2864.
  YANG P F, ZHANG Z J, YANG R X, et al. Theorical study on propulsive performance of oblique detonation engine[J]. Chinese Journal of Theoretical and Applied Mechanics202153(10): 2853-2864 (in Chinese).
35 BIAN J, ZHOU L, TENG H H. Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures[J]. Fuel2021286: 119458.
36 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报201536(1): 274-288.
  ZHANG K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica201536(1): 274-288 (in Chinese).
37 XIONG H C, QIU R F, HAN X, et al. Investigating the flow characteristics and thermodynamic performance of curved detonation waves[J]. Physics of Fluids202335(8): 087119.
38 JACHIMOWSKI C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion: NASA-TP-2791[R]. Washington, D.C.: NASA, 1988.
39 LEHR H F. Experiments on shock-induced combustion[J]. Acta Astronautica197217: 589-597.
40 WANG T, ZHANG Y N, TENG H H, et al. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture[J]. Physics of Fluids201527(9): 096101.
41 SHI C G, ZHU C X, YOU Y C, et al. Method of curved-shock characteristics with application to inverse design of supersonic flowfields[J]. Journal of Fluid Mechanics2021920: A36.
42 M?LDER S. Curved shock theory[J]. Shock Waves201626(4): 337-353.
43 SHI C G, HAN W Q, DEITERDING R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics2020891: A21.
44 ALEXANDER D C, SISLIAN J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power200824(1): 34-44.
Outlines

/