Reviews

Progress in thermodynamic cycle research of hypersonic precooled engine

  • Yifan WANG ,
  • Zhengping ZOU ,
  • Maozhang CHEN
Expand
  • 1.Research Institute of Aero?Engine,Beihang University,Beijing 102206,China
    2.National Key Laboratory of Science and Technology on Aero?Engine Aero?Thermodynamics,Beihang University,Beijing 100191,China
    3.School of Energy and Power Engineering,Beihang University,Beijing 100191,China

Received date: 2023-07-19

  Revised date: 2023-08-07

  Accepted date: 2023-09-07

  Online published: 2023-09-15

Supported by

Foundation of National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics(2022-JCJQ-LB-062-0204)

Abstract

Advanced propulsion systems serve as the fundamental support for the horizontal takeoff and landing reusable hypersonic vehicles, amongst which hypersonic precooled engines have garnered significant attention in recent years due to its high potential. Therefore, it is crucial to conduct an in-depth investigation into the thermodynamic cycle of precooled engines and acquire a deep understanding of its working characteristics. This paper provides a comprehensive review of the domestic and overseas progress in the thermodynamic cycle of hypersonic precooled engines. The review encompasses various aspects, such as the modeling and analysis methods employed for engine thermodynamic cycle, the performance analysis methods, and the typical thermodynamic cycle schemes of precooled engines. Specifically, the open-loop direct precooled cycle and the closed-loop indirect precooled thermodynamic cycle with intermediate medium are introduced due to their marked differences. The research shows that for open-looped direct precooled cycle, fuel type is fundamental in determining its performance, and improving the heat sink of fuel is an important way to improve engine performance. As for closed-loop indirect precooled thermodynamic cycle with intermediate medium, there are some contradictions between the engine performance (specific impulse, specific thrust, etc.) and the complexity of closed cycle. Overall, it is necessary to continue the study on the key components of hypersonic precooled engines, refine more accurate component performance models, and improve component size, weight and other estimation models, in order to achieve accurate evaluation of engine specific impulse, specific thrust, thrust-to-weight ratio and other overall performance parameters, and then support the highly feasible thermodynamic scheme design of hypersonic precooled engines.

Cite this article

Yifan WANG , Zhengping ZOU , Maozhang CHEN . Progress in thermodynamic cycle research of hypersonic precooled engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 529343 -529343 . DOI: 10.7527/S1000-6893.2023.29343

References

1 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术2020(6): 81-86.
  ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology2020(6): 81-86 (in Chinese).
2 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术202031(11): 3-6.
  LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology202031(11): 3-6 (in Chinese).
3 乐嘉陵. 高超声速技术及其在军事上的应用[J]. 现代军事2000(6): 10-12, 8.
  LE J L. Hypersonic technology and its application in military affairs[J]. Conmilit2000(6): 10-12, 8 (in Chinese).
4 魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术2022(1): 1-12.
  WEI Y Y. Major technological issues of aerospace vehicle with combined-cycle propulsion[J]. Aerospace Technology2022(1): 1-12 (in Chinese).
5 凌文辉, 侯金丽, 韦宝禧, 等. 空天组合动力技术挑战及解决途径的思考[J]. 推进技术201839(10): 2171-2176.
  LING W H, HOU J L, WEI B X, et al. Technical challenge and potential solution for aerospace combined cycle engine[J]. Journal of Propulsion Technology201839(10): 2171-2176 (in Chinese).
6 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展200939(6): 716-739.
  WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics200939(6): 716-739 (in Chinese).
7 李应红. 中国高超声速航空发动机2035发展战略[M]. 北京: 科学出版社, 2023: 209-215.
  LI Y H. 2035 development strategy for hypersonic aero-engine in China[M]. Beijing: Science Press, 2023: 209-215 (in Chinese).
8 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机202147(4): 1-7.
  YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine202147(4): 1-7 (in Chinese).
9 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报201536(8): 2544-2562.
  ZOU Z P, LIU H X, TANG H L, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2544-2562 (in Chinese).
10 DAI J, ZUO Q R. Key technologies for thermodynamic cycle of precooled engines: A review[J]. Acta Astronautica2020177: 299-312.
11 MEHTA U, BOWLES J, MELTON J, et al. Water injection pre-compressor cooling assist space access[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
12 芮长胜, 张超, 越冬峰. 射流预冷涡轮发动机技术研究及发展[J]. 航空科学技术201526(10): 53-59.
  RUI C S, ZHANG C, YUE D F. Technical study and development of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology201526(10): 53-59 (in Chinese).
13 尚守堂, 田方超, 扈鹏飞. 涡轮发动机射流预冷关键技术分析[J]. 航空科学技术201829(1): 1-3.
  SHANG S T, TIAN F C, HU P F. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology201829(1): 1-3 (in Chinese).
14 BUILDER C H. Liquid air jet propulsion engine and method of operating same: USD3452541[P]. 1961-02-09.
15 HEMPSELL M. HOTOL’s secret engines revealed[J]. Spaceflight199335(5): 168-172.
16 BALEPIN V, CIPRIANO J, BERTHUS M. Combined propulsion for SSTO rocket - From conceptual study to demonstrator of deep cooled turbojet[C]∥ Proceedings of the Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996.
17 BALEPIN V. Rocket engine: US6769242B1[P]. 2001-11-21.
18 TANATUSGU N, SATO T, NARUO Y, et al. Development study on ATREX engine[J]. Acta Astronautica199740(2-8): 165-170.
19 SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of a precooled turbojet engine[J]. Acta Astronautica201066(7-8): 1169-1176.
20 TANATSUGU N, NARUO Y, ROKUTANDA I. Test results of the air turbo ramjet for a future space plane[J]. Acta Astronautica199432(12): 785-796.
21 KOJIMA T, KOBAYASHI H, TAGUCHI H, et al. Design study of hypersonic components for precooled turbojet engine[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
22 SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of a precooled turbojet engine for flight demonstration [C]∥ Proceedings of the Korean Society of Propulsion Engineers Conference. 2008: 109-114.
23 TAGUCHI H, HARADA K, KOBAYASHI H, et al. Mach 4 wind tunnel experiment of hypersonic pre-cooled turbojet engine[C]∥ Proceedings of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2014.
24 HEMPSELL M. Progress on the SKYLON and SABRE [C]∥ Proceedings of the International Astronautical Congress. 201311: 8427-8440.
25 BARTHA J, WEBBER H. SABRE technology development[C]∥ 67th International Astronautical Congress. 2016.
26 STEELANT J. Sustained hypersonic flight in Europe: Technology drivers for LAPCAT II[C]∥ Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
27 VARVILL R, DURAN I, KIRK A, et al. Sabre technology development: Status and update [C]∥ 8th European Conference for Aeronautics and Space Sciences (EUCASS). 2019.
28 CHEN Y M, ZOU Z P, LIU H X, et al. Verification at Mach 4 heat conditions of an annular microtube-typed precooler for hypersonic precooled engines[J]. Applied Thermal Engineering2022201: 117742.
29 WANG C S, ERI Q T, WANG Y, et al. Multi-objective aerodynamic optimization of an axisymmetric variable-geometry inlet with a Mach 5 design point[J]. Aerospace Science and Technology2023136: 108189.
30 WANG C S, ERI Q T, WANG Y, et al. Flow and heat transfer characteristics of intake-precooler system for hypersonic precooled aero-engine[J]. Applied Thermal Engineering2023229: 120596.
31 WANG Y, LIN Y Z, ERI Q T, et al. Flow and thrust characteristics of an expansion-deflection dual-bell nozzle[J]. Aerospace Science and Technology2022123: 107464.
32 BAI N, FAN W, ZHANG R. A mixing enhancement mechanism for a hydrogen transverse jet coupled with a shear layer for gas turbine combustion[J]. Physics of Fluids202335(4): 045111.
33 玉选斐. 预冷吸气式组合推进系统热力循环及控制规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
  YU X F. Research on thermodynamic cycle and control law of precooled airbreathing propulsion system[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
34 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005: 1-27.
  LIAN X C, WU H. Aeroengine principle[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 1-27 (in Chinese).
35 WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society200962(4): 122-130.
36 YU X F, WANG C, YU D R. Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion[J]. Energy2019186: 115772.
37 DONG P C, TANG H L, CHEN M. Study on multi-cycle coupling mechanism of hypersonic precooled combined cycle engine[J]. Applied Thermal Engineering2018131: 497-506.
38 VARVILL R, BOND A. A comparison of propulsion concepts for SSTO reusable launchers[J]. Journal of the British Interplanetary Society200356(3-4):108-117.
39 BALLAND S, FERNANDEZ VILLACE V, STEELANT J. Thermal and energy management for hypersonic cruise vehicles-cycle analysis[C]∥ Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015.
40 ALEXIOU A. Introduction to gas turbine modelling with PROOSIS-First edition[M]. Madrid: Empresarios Agrupados Internacional, 2011.
41 LEMMON E, HUBER M, MCLINDEN M. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1 [S]. Gaithersburg: NIST, 2013.
42 WANG H Y, YANG Z N, LIU J, et al. Activating ABO3-type coating by additive for coke inhibition in supercritical thermal cracking of endothermic hydrocarbon fuel[J]. Fuel Processing Technology2020198: 106229.
43 董飞. 十氢萘超临界裂解脱氢的研究[D]. 天津: 天津大学, 2003.
  DONG F. Study on supercritical pyrolysis and dehydrogenation of decalin[D]. Tianjin: Tianjin University, 2003 (in Chinese).
44 ZHOU H, GAO X K, LIU P H, et al. Energy absorption and reaction mechanism for thermal pyrolysis of n-decane under supercritical pressure[J]. Applied Thermal Engineering2017112: 403-412.
45 HUBER M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERSTRAPP)–Version 3.2[M]. Gaithersburg: NIST, 2007.
46 KEE R J, RUPLEY F M, MEEKS E, et al. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics: SAND. 96-8216 [R]. Livermore: Sandia National Lab, 1996.
47 GOODWIN D G. Cantera C++ user’s guide[M]. California: California Institute of Technology, 2002: 32.
48 李宜敏. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 1985: 69-75.
  LI Y M. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 1985: 69-75 (in Chinese).
49 范作民, 傅巽权. 热力过程计算与燃气表-下卷 [M]. 北京: 国防工业出版社, 1987: 125-134.
  FAN Z M, FU X Q. Thermal process calculation and gas meter-Volume II[M]. Beijing: National Defense Industry Press, 1987: 125-134 (in Chinese).
50 MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications[M]. Cleveland: NASA Lewis Research Center, 1996: 1-3.
51 黄晨. 膨胀式空气涡轮冲压发动机部件匹配及性能优化研究[D]. 北京: 中国科学院工程热物理研究所, 2018.
  HUANG C. Research on air turbo ramjet expander engine component matching and performance optimization[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2018 (in Chinese).
52 邹正平, 王一帆, 姚李超, 等. 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报202248(9): 1643-1677.
  ZOU Z P, WANG Y F, YAO L C, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system[J]. Journal of Beijing University of Aeronautics and Astronautics202248(9): 1643-1677 (in Chinese).
53 王一帆. 高超声速预冷发动机数学模型及多构型热力循环性能研究[D]. 北京: 北京航空航天大学, 2022.
  WANG Y F. Modeling method and thermodynamic analysis of multi-layout airbreathing precooled engine[D]. Beijing: Beihang University, 2022 (in Chinese).
54 邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机202147(4): 8-21.
  ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine202147(4): 8-21 (in Chinese).
55 GAO J H, HUANG Y Y. Modeling and simulation of an aero turbojet engine with GasTurb[C]∥ 2011 International Conference on Intelligence Science and Information Engineering. Piscataway: IEEE Press, 2011: 295-298.
56 XU P C, ZOU Z P, YAO L C. A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J]. Energy Conversion and Management2021247: 114747.
57 张建强. 组合发动机预冷器微小管道内低温工质流动传热机理研究[D]. 长沙: 国防科技大学, 2018.
  ZHANG J Q. Research on the flow and heat transfer mechanism of cryogenic fluid in the micro/mini-channel of combined cycle engine precooler[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
58 HOOPES K, SáNCHEZ D, CRESPI F. A new method for modelling off-design performance of sCO2 heat exchangers without specifying detailed geometry[C]∥ Fifth Supercritical CO2 Power Cycles Symposium. 2016.
59 邹正平, 王一帆, 杜鹏程, 等. 强预冷发动机新型热力循环布局及性能分析[J]. 火箭推进202147(6): 62-75.
  ZOU Z P, WANG Y F, DU P C, et al. Thermodynamic performance analysis of anovel precooled airbreathing engine layout[J]. Journal of Rocket Propulsion202147(6): 62-75 (in Chinese).
60 ZOU Z P, WANG Y F, DU P C, et al. A novel simplified precooled airbreathing engine cycle: Thermodynamic performance and control law[J]. Energy Conversion and Management2022258: 115472.
61 GALLIMORE S J. Axial flow compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science1999213(5): 437-449.
62 CHURCHILL S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering (New York)197784(24): 91-92.
63 LI H, ZOU Z P, LIU Y M. A refined design method for precoolers with consideration of multi-parameter variations based on low-dimensional analysis[J]. Chinese Journal of Aeronautics202235(3): 329-344.
64 丁超. 非燃气介质涡轮气动设计方法[D]. 北京: 北京航空航天大学, 2019.
  DING C. Aerodynamic design method of turbine with unconventional medium[D]. Beijing: Beihang University, 2019 (in Chinese).
65 ZOU Z P, WANG Y F, LI H, et al. Thermal-hydraulic characteristics of a PCHE with zigzag microchannel for hypersonic precooled aero-engines: An experimental study[J]. Experimental Heat Transfer2022: 1-22.
66 张国瑞. 行星传动技术[M]. 上海: 上海交通大学出版社, 1989: 6-124.
  ZHANF G R. Planetary transmission technology[M]. Shanghai: Shanghai Jiao Tong University Press, 1989: 6-124 (in Chinese).
67 FERNANDEZ-VILLACE V, PANIAGUA G. Numerical model of a variable-combined-cycle engine for dual subsonic and supersonic cruise[J]. Energies20136(2): 839-870.
68 YU X F, WANG C, YU D R. Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion[J]. Energy2019170: 546-556.
69 WEI X, JIN F, JI H H, et al. Thermodynamic analysis of key parameters on the performance of air breathing pre-cooled engine[J]. Applied Thermal Engineering2022201: 117733.
70 MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design [M]. 2nd ed. Reston: AIAA, 2002.
71 KOBAYASHI H, TAGUCHI H, KOJIMA T, et al. Performance analysis of Mach 5 hypersonic turbojet developed in JAXA[C]∥ Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
72 VARVILL R. Heat exchanger development at reaction engines ltd[J]. Acta Astronautica201066(9-10): 1468-1474.
73 陈操斌, 刘国栋, 杜鹏程, 等. 碳氢燃料直接预冷发动机性能方案对比研究[C]∥第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨 2021 航空发动机技术发展高层论坛论文集 (第三册). 2022.
  CHEN C B, LIU G D, DU P C, et al. Comparative study on performance schemes of hydrocarbon fuel direct precooling engine[C]∥ The 6th Aerospace Power Joint Conference and the 42nd Technology Exchange Conference of the 3rd Professional Information Network of China Aerospace and the 2021 High Level Forum on Aeroengine Technology Development (Volume III). 2022 (in Chinese).
74 LI Y, JIN B T, ZHANG X W, et al. Pyrolysis and heat sink of an endothermic hydrocarbon fuel EHF-851[J]. Journal of Analytical and Applied Pyrolysis2021155: 105084.
75 ZHANG Q, LIU G Z, WANG L, et al. Controllable decomposition of methanol for active fuel cooling technology[J]. Energy & Fuels201428(7): 4431-4439.
76 PAN X, XIONG Y F, WANG C, et al. Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel[J]. Energy2022248: 123582.
77 YU X F, YU W L, WANG C, et al. Thermodynamic analysis of the influential mechanism of fuel properties on the performance of an indirect precooled hypersonic airbreathing engine and vehicle[J]. Energy Conversion and Management2019196: 1138-1152.
78 WANG C, HUANG H Y, ZHANG J L, et al. Analysis of energy cascade utilization in the chemically precooled engine cycle from a perspective of indirect combustion[J]. Fuel2023334: 126619.
79 TOGAWA M, AOKI T, HIRAKOSO H, et al. A concept of LACE for SSTO space plane[C]∥ 3rd International Aerospace Planes Conference. Reston: AIAA, 1991.
80 BOND A. Aerospace propulsion: US5101622[P]. 1992-04-07.
81 BALEPIN V. High speed propulsion cycles[C]∥ Advances on Propulsion Technology for High-Speed Aircraft. 2007.
82 BALEPIN V V, MAITA M, MURTHY S N B. Third way of development of single-stage-to-orbit propulsion[J]. Journal of Propulsion and Power200016(1): 99-104.
83 SATO T, TANATSUGU N, HATTA H, et al. Development study of the ATREX engine for TSTO spaceplane[C]∥ Proceedings of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001.
84 ISOMURA K, OMI J. A comparative study of an ATREX engine and a turbo jet engine[C]∥ 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001.
85 ISOMURA K, OMI J, TANATSUGU N, et al. A feasibility study of a new ATREX engine system of aft-turbine configuration[J]. Acta Astronautica200251(1-9): 153-160.
86 郑佳琳. 预冷发动机热力循环及调节规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
  ZHENG J L. Research on thermodynamic cycle and regulating law of the precooled engine[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese).
87 周倩楠. 预冷ATREX发动机新型循环性能优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
  ZHOU Q N. The performance optimization of new cycle precooler ATREX engine[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
88 罗佳茂, 杨顺华, 张建强, 等. 甲烷预冷膨胀循环空气涡轮火箭发动机性能分析[J]. 推进技术202142(9): 1964-1975.
  LUO J M, YANG S H, ZHANG J Q, et al. Performance analysis of expander cycle air-turborocket with methane-precooled[J]. Journal of Propulsion Technology202142(9): 1964-1975 (in Chinese).
89 罗佳茂, 杨顺华, 母忠强, 等. 预冷型组合循环发动机技术[J]. 空气动力学学报202240(1): 190-207.
  LUO J M, YANG S H, MU Z Q, et al. Technology analysis of pre-cooled combined-cycle engine[J]. Acta Aerodynamica Sinica202240(1): 190-207 (in Chinese).
90 张鑫, 陆阳, 李腾, 等. 氨预冷膨胀循环空气涡轮火箭发动机性能分析[C]∥ 第十四届全国高超声速科技学术会议论文集. 2023: 2-10.
  ZHANG X, LU Y, LI T, et al. Performance analysis of ammonia precooled expanded circulating air turbine rocket engine[C]∥ Proceedings of the 14th National Hypersonic Science and Technology Conference. 2023: 2-10 (in Chinese).
91 SATO T, TAGUCHI H, KOBAYASHI H, et al. Development study of precooled-cycle hypersonic turbojet engine for flight demonstration[J]. Acta Astronautica200761(1-6): 367-375.
92 ZHAO W, HUANG C, ZHAO Q J, et al. Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles[J]. Energy2018154: 96-109.
93 赵巍, 赵庆军, 徐建中. 进气预冷富燃预燃混排涡扇发动机热力循环[J]. 工程热物理学报201738(7): 1557-1563.
  ZHAO W, ZHAO Q J, XU J Z. A pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle[J]. Journal of Engineering Thermophysics201738(7): 1557-1563 (in Chinese).
94 WANG C, YU X F, HA C, et al. Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle[J]. Energy2023262: 125352.
95 WANG C, FENG Y, LIU Z K, et al. Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia[J]. Energy2022261: 125272.
96 WANG C, CHENG K L, QIN J, et al. Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels[J]. Energy2022249: 123606.
97 温泉, 苗辉, 周琨. 强预冷涡轮发动机关键技术分析[J]. 航空科学技术202334(5): 1-6.
  WEN Q, MIAO H, ZHOU K. Key technology analysis of precooled turbine engine[J]. Aeronautical Science & Technology202334(5): 1-6 (in Chinese).
98 WEBBER H, BOND A, HEMPSELL M. Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]∥ 57th International Astronautical Congress. Reston: AIAA, 2006.
99 YU X F, WANG C, YU D R. Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine[J]. Energy Conversion and Management2020209: 112548.
100 FERNáNDEZ-VILLACé V, PANIAGUA G. On the exergetic effectiveness of combined-cycle engines for high speed propulsion[J]. Energy201351: 382-394.
101 ZHANG J Q, WANG Z G, LI Q L. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J]. Acta Astronautica2017138: 394-406.
102 屈原, 徐旭, 杨庆春. ?分析在协同吸气式火箭发动机中的应用[J]. 推进技术201940(8): 1693-1701.
  QU Y, XU X, YANF Q C. Application of exergy analysis in synergistic air-breathing rocket engine[J]. Journal of Propulsion Technology201940(8): 1693-1701 (in Chinese).
103 FERNáNDEZ V V. Simulation, design and analysis of air-breathing combined-cycle engines for high speed propulsion[D]. Brussels: Von Karman Institute for Fluid Dynamics, 2013.
104 DONG P C, TANG H L, CHEN M, et al. Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy2018220: 36-46.
105 YU X F, WANG C, YU D R. Configuration optimization of the tandem cooling-compression system for a novel precooled hypersonic airbreathing engine[J]. Energy Conversion and Management2019197: 111827.
106 BREVAULT L, BALESDENT M, WUILBERCQ R, et al. Conceptual design of a two-stage-to-orbit vehicle using SABRE engines[C]∥ EUCASS 2019. 2019.
107 高远, 陈玉春, 王治华, 等. 深冷组合循环发动机吸气模态循环分析与设计可行域研究[J]. 推进技术202041(6): 1217-1226.
  GAO Y, CHEN Y C, WANG Z H, et al. Cycle analysis and design feasible region research of deeply precooled combined cycle engine in airbreathing mode[J]. Journal of Propulsion Technology202041(6): 1217-1226 (in Chinese).
108 陈操斌, 郑日恒, 马同玲, 等. 带有闭式布雷顿循环的预冷发动机特性研究[J]. 推进技术202142(8): 1749-1760.
  CHEN C B, ZHENG R H, MA T L, et al. Characteristics of precooled engine with closed brayton cycle[J]. Journal of Propulsion Technology202142(8): 1749-1760 (in Chinese).
109 FEAST S. The synergetic air-breathing rocket engine (SABRE) development status update[C]∥ Proceedings of the International Astronautical Congress. 2020: IAC-20- C4-7-1.
110 BOND A, VARVILL R. Combined turbojet and turboprop engine: WO2014GB00408 [P]. 2014-10-10.
111 JIVRAJ F, BOND A, VARVILL R, et al. The scimitar precooled Mach 5 engine[C]∥ 2nd European Conference for Aerospace Sciences. 2007.
112 VILLACE V F, PANIAGUA G. Simulation of a variable-combined-cycle engine for dual subsonic and supersonic cruise[C]∥ 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
113 TANBAY T, DURMAYAZ A. Energy, exergy and ecological analysis and multiobjective optimization of the hydrogen-fueled Scimitar engine with fixed nozzle geometry[J]. International Journal of Hydrogen Energy202247(45): 19876-19887.
114 TANBAY T, UCA M B, DURMAYAZ A. Assessment of NO x emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy202045(5): 3632-3640.
115 TANBAY T, DURMAYAZ A. Exergy and NO x emission-based ecological performance analysis of the scimitar engine[J]. Journal of Engineering for Gas Turbines and Power2020142(8): 081008.
116 张蒙正, 南向谊, 刘典多. 预冷空气涡轮火箭组合动力系统原理与实现途径[J]. 火箭推进201642(1): 6-12.
  ZHANG M Z, NAN X Y, LIU D D. Principles and realizing ways of combined power system for pre-cooling air turbo rocket[J]. Journal of Rocket Propulsion201642(1): 6-12 (in Chinese).
117 朱岩, 马元, 张蒙正. 预冷空气涡轮火箭发动机氦循环系统的参数特性[J]. 航空动力学报201833(8): 2016-2024.
  ZHU Y, MA Y, ZHANG M Z. Characteristic of helium cycle system parameters for pre-cooling air turbo rocket engine[J]. Journal of Aerospace Power201833(8): 2016-2024 (in Chinese).
118 张蒙正, 刘典多, 马海波, 等. PATR发动机关键技术与性能提升途径初探[J]. 推进技术201839(9): 1921-1927.
  ZHANG M Z, LIU D D, MA H B, et al. Preliminary analysis on critical technology and performance improvement of PATR engine[J]. Journal of Propulsion Technology201839(9): 1921-1927 (in Chinese).
119 FERNáNDEZ-VILLACé V, PANIAGUA G. Simulation of a combined cycle for high speed propulsion[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
120 ZHANG D, CHEN C, YU X F. Control law synthetizing for an innovative indirect precooled airbreathing engine under off-design operation conditions[J]. Energy2023263: 126110.
121 高远, 陈玉春, 史新兴. 深冷组合发动机吸气模态最大状态控制规律研究[J]. 推进技术202041(12): 2659-2669.
  GAO Y, CHEN Y C, SHI X X. Maximum state control schedule research on deeply precooled combined cycle engine in airbreathing mode[J]. Journal of Propulsion Technology202041(12): 2659-2669 (in Chinese).
122 马文友, 张文胜, 马元, 等. 基于控制规律的PATR发动机典型工况点速度与高度特性分析[J]. 火箭推进202248(6): 35-43.
  MA W Y, ZHANG W S, MA Y, et al. Analysis of velocity and altitude characteristics at typical operating conditions based on control law of PATR engine[J]. Journal of Rocket Propulsion202248(6): 35-43 (in Chinese).
123 LONGSTAFF R, BOND A. The SKYLON project[C]∥ 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
Outlines

/