ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Vibration damping electric actuator system based on parallel independent control strategy
Received date: 2023-09-13
Revised date: 2023-10-06
Accepted date: 2023-11-08
Online published: 2023-11-22
Supported by
National Natural Science Foundation of China(52077100);Aeronautical Science Foundation of China(201958052001)
The traditional vibration damping electric actuator adopts cross-coupling control strategy to realize the servo control of output force. However, there are coupling control items in this control strategy, which affect the rapidity and accuracy of the system response and reduces the vibration reduction efficiency of the actuator. At the same time, the impulse voltage on the Direct Current (DC) bus side cannot meet the requirements of the national military standard, which directly threatens the flight safety of the helicopter. This paper proposes a servo control system for vibration damping electric actuator using the parallel independent control strategy. Firstly, the given output force of the system is decoupled to realize the parallel and independent operation of multi-motors. Secondly, the dominant pole method and maximum sensitivity method are used to design the dynamic and steady-state characteristics and robustness of the system from the perspectives of time domain and frequency domain, respectively. Finally, an experimental platform is set up to compare the control strategies. The unitary experimental data show that the response accuracy of the system is increased by 3.6% and the response time is reduced by 40% when the direction is changed; the response accuracy is increased by 1.5% and the response time is reduced by 31% when the phase is changed; the voltage impact value on the DC bus side is reduced by 8 V. The experimental data verify the effectiveness and advantages of the parallel independent control strategy.
Zhenyang HAO , Fengting ZHANG , Jian YANG , Xin CAO . Vibration damping electric actuator system based on parallel independent control strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 329573 -329573 . DOI: 10.7527/S1000-6893.2023.29573
1 | 祝威. 直升机卫星通信性能提升技术难点和关键技术的研究探讨[J]. 信息通信技术, 2021, 15(3): 69-77. |
ZHU W. Performance improvement of helicopter satellite communication research and discussion on technical difficulties and key technologies[J]. Information and Communications Technologies, 2021, 15(3): 69-77 (in Chinese). | |
2 | 航空航天工业部科学技术研究院. 直升机动力学手册[M]. 北京: 航空工业出版社, 1991: 4-33. |
Research Institute of Science and Technology. Handbook of helicopter dynamics[M]. Beijing: Aviation Industry Press, 1991: 4-33 (in Chinese). | |
3 | 梁昆, 王文涛. 基于坐标变换的直升机旋翼部件对机体异常振动影响的研究[J]. 装备制造技术, 2017(7): 57-59, 76. |
LIANG K, WANG W T. Study of impact of the rotor components on abnormal vibration of helicopter airframe based on coordinate transformation[J]. Equipment Manufacturing Technology, 2017(7): 57-59, 76 (in Chinese). | |
4 | 吴希明. 直升机动力学工程设计[M]. 北京: 航空工业出版社, 2017. |
WU X M. Engineering design of helicopter dynamics[M]. Beijing: Aviation Industry Press, 2017 (in Chinese). | |
5 | HAO Z Y, LI X, CAO X, et al. A cross-coupled control strategy of phase difference for electric vibration damping actuator[J]. IEEE Access, 2020, 8: 213887-213898. |
6 | GARNJOST K D, REY G J. Modular vibratory force generator, and method of operating same: US5903077[P]. 1999-05-11. |
7 | WELSH W A. Test and evaluation of fuselage vibra-tion utilizing active control of structural response(ACSR) optimized to ADS-27[C]∥Proceedings of the 46th Annual Forum of the American Helicopter Society. West Palm Beach: AHS, 1990: 21-37. |
8 | JUNG S U, KWAK D I, KIM S H, et al. Vibration reduction devices for Korean utility helicopter[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2013, 41(12): 987-993. |
9 | 韩广才, 李鸿, 王芝秋. 船舶电动消振作动器研究[J]. 哈尔滨工程大学学报, 2005, 26(1): 39-43. |
HAN G C, LI H, WANG Z Q. Vibration controlling actuator for electric motor of ship[J]. Journal of Harbin Engineering University, 2005, 26(1): 39-43 (in Chinese). | |
10 | 宋奎辉. 基于离心式作动器的旋翼桨毂振动抑制技术研究[D]. 南京: 南京航空航天大学, 2021: 53-62. |
SONG K H. The research on hub mounted vibration suppression technique based on centrifugal force generator[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 53-62 (in Chinese). | |
11 | 郝振洋, 王涛, 曹鑫, 等. 消振电力作动器用位置环解耦控制策略[J]. 航空学报, 2022, 43(8): 325884. |
HAO Z Y, WANG T, CAO X, et al. Decoupling control strategy of position loop for vibration damping electric actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 325884 (in Chinese). | |
12 | KING S P, STAPLE A E. Minimization of helicopter vibraton through active control of structural response: AGARD-CP-423[R]. Brussels: AGARD, 1986. |
13 | HAO Z Y, WANG T, CAO X, et al. Design of eccentric mass-type vibration-damping electric actuator control system for non-fixed-wing aircraft[J]. IEEE Access, 2020, 8: 219415-219429. |
14 | DOUGLAS S, BLACK P, VICTOR G, et al. Active vibration control using circular force generators[C]∥41st European Rotorcraft Forum 2015. Munich: Scopus, 2015: 627-637. |
15 | 张永孝, 李强. 直升机结构响应主动控制技术工程化应用研究[J]. 飞行力学, 2015, 33(4): 371-375. |
ZHANG Y X, LI Q. Research of engineering application for active control of helicopter structure responses[J]. Flight Dynamics, 2015, 33(4): 371-375 (in Chinese). | |
16 | 刘艳, 李银伢, 戚国庆. 微型天线伺服系统保主导极点配置控制器设计[J]. 电光与控制, 2011, 18(6): 79-84. |
LIU Y, LI Y Y, QI G Q. Design of controllers with guaranteed dominant pole placement for miniaturized antenna servo system[J]. Electronics Optics & Control, 2011, 18(6): 79-84 (in Chinese). | |
17 | 谭华军, 和阳, 赵文祥, 等. 双三相永磁同步电机位置伺服前馈反馈复合控制[J]. 电机与控制应用, 2021, 48(2): 22-30. |
TAN H J, HE Y, ZHAO W X, et al. Compound position servo control for dual three-phase permanent magnet synchronous motor by using feedforward and feedback[J]. Electric Machines & Control Application, 2021, 48(2): 22-30 (in Chinese). | |
18 | 王莉娜, 朱鸿悦, 杨宗军. 永磁同步电动机调速系统PI控制器参数整定方法[J]. 电工技术学报, 2014, 29(5): 104-117. |
WANG L N, ZHU H Y, YANG Z J. Tuning method for PI controllers of PMSM driving system[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 104-117 (in Chinese). | |
19 | 左泽轩, 薛战东, 张瑶. 民机舱室排气阀门无刷直流电机制动控制研究[J]. 民用飞机设计与研究, 2022(3): 86-93. |
ZUO Z X, XUE Z D, ZHANG Y. Braking control of brushless direct current motor for outflow valve of civil aircraft cabin[J]. Civil Aircraft Design & Research, 2022(3): 86-93 (in Chinese). | |
20 | 张卫平. 开关变换器的建模与控制[M]. 北京: 机械工业出版社, 2020. |
ZHANG W P. Modeling and control of switching converter[M]. Beijing: China Machine Press, 2020 (in Chinese). | |
21 | TANG W, HUANG J M, WU J, et al. A PID tuning method based on dominant poles and phase margin[C]∥Proceedings of the 29th Chinese Control Conference. Piscataway: IEEE Press, 2010: 3402-3405. |
22 | 郭天石. 一种基于主导极点的三阶闭环参考模型及其PID实现[J]. 四川轻化工学院学报, 2003, 16(4): 1-4. |
GUO T S. Closed loop reference model of order 3 based on the dominant poles and PID implement[J]. Journal of Sichuan Institute of Light Industry and Chemical Technology, 2003, 16(4): 1-4 (in Chinese). | |
23 | ASTROM K J, HAGGLUND T. Advanced PID control [M]. Research Triangle Park: Instruments Society of American, 2005: 158-221. |
/
〈 |
|
〉 |