ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review
Received date: 2023-09-18
Revised date: 2023-09-28
Accepted date: 2023-11-03
Online published: 2023-11-16
Supported by
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Natural Science Foundation of China(92371109);Project of State Key Laboratory of Aerodynamics(SKLA-2022-KFKT-005)
Morphing aircraft, capable of real-time shape deformation according to task requirements and flight conditions to achieve optimal flight performance, has emerged as a significant direction for the future development of aircraft. This paper reviews the research status of deformation modes and key technologies of aerodynamic layout design for morphing aircraft. Firstly, the development of morphing aircraft can be divided into two stages by the progression of time: the mechanical deformation stage and the flexible and muti-dimensional deformation stage. Then, this article summarizes morphing solutions for different parts of the aircraft, namely, the head deformation, wing deformation, power plant deformation, and combined deformation. It particularly explores the developmental history of various wing morphing schemes, discusses their applications in different aerodynamic configurations including variable sweep wing, variable forward sweep wing, folding wing, telescopic wing, oblique wing, continuous variable curvature wing, and analyzes their aerodynamic and stability characteristics, respectively. Next, the implementation objectives of morphing aircraft are summarized and divided into three types: single domain optimal variable configuration, multi-domain fusion variable configuration, and one vessel multi-energy variable configuration. Subsequently, compared with fixed shape aircraft, the key technical challenges in aerodynamic layout and overall coordination design, time-varying aerodynamic effect evaluation, aerodynamic layout scheme optimization, and multidisciplinary coupling design derived from the implementation of morphing aircraft are analyzed, with particular focus on the research progress and current status of dynamic aerodynamic calculation methods and aerodynamic optimization design technologies for morphing aircraft. Finally, the future research direction and development prospects of morphing technologies are envisioned. Targeting at the needs of wide velocity domain and large airspace flight, exploring new conceptual deformation methods that can improve the performance of multiple flight missions and establishing intelligent morphing design model and multidisciplinary strong coupling integrated design system will become important development trends.
Shusheng CHEN , Muliang JIA , Yanxu LIU , Zhenghong GAO , Xinghao XIANG . Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629595 -629595 . DOI: 10.7527/S1000-6893.2023.29595
1 | 李雪江, 刘峰, 乔宇. 变体飞行器发展现状与应用前景[J]. 飞机设计, 2022, 42(5): 1-7, 13. |
LI X J, LIU F, QIAO Y. Development and application prospect of morphing aircraft[J]. Aircraft Design, 2022, 42(5): 1-7, 13 (in Chinese). | |
2 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
3 | JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ Smart Structures and Materials. Proc SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: SPIE, 2004, 5388: 213-224. |
4 | 李军府, 艾俊强, 董海锋. 飞机变形技术发展探究[J]. 航空科学技术, 2009, 20(2): 3-6. |
LI J F, AI J Q, DONG H F. Research on the development of aircraft morphing technologies[J]. Aeronautical Science and Technology, 2009, 20(2): 3-6 (in Chinese). | |
5 | SMITH S B, NELSON D W. Determination of the aerodynamic characteristics of the mission adaptive wing[J]. Journal of Aircraft, 1990, 27(11): 950-958. |
6 | PERRY B III, COLE S R, MILLER G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15. |
7 | CLARKE R, ALLEN M, DIBLEY R, et al. Flight test of the F/A-18 active aeroelastic wing airplane[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005: AIAA2005-6316. |
8 | PENDLETON E, FLICK P, PAUL D, et al. The X-53 A summary of the active aeroelastic wing flight research program[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1855. |
9 | KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. |
10 | KUZMINA S, ISHMURATOV F, ZICHENKOV M, et al. Integrated numerical and experimental investigations of the Active/Passive Aeroelastic concepts on the European Research Aeroelastic Model (EuRAM) [J]. Journal of Aeroelasticity and Structural Dynamics, 2011, 2(2): 31-51. |
11 | LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1729. |
12 | TAKAHASHI T, SPALL R, TURNER D, et al. A multi-disciplinary assessment of morphing aircraft technology applied to tactical cruise missile configuations[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: AIAA2004-1725. |
13 | FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1707. |
14 | KUZMINA S, ISHMURATOV F, ZICHENKOV M, et al. Wind tunnel testing of adaptive wing structures[M]∥ Morphing Wing Technologies. Amsterdam: Elsevier, 2018: 713-755. |
15 | CONCILIO A, DIMINO I, PECORA R. SARISTU: adaptive Trailing Edge Device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7): 187-210. |
16 | CUMMING S B, SMITH M S, ALI A, et al. Aerodynamic flight test results for the adaptive compliant trailing edge[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016: AIAA2016-3855. |
17 | 张庆, 董彦非, 李恒, 等. 展向自适应机翼总体气动特性分析[J]. 西安交通大学学报, 2020, 54(10): 174-184. |
ZHANG Q, DONG Y F, LI H, et al. Computational investigation of overall aerodynamic characteristics for spanwise adaptive wing[J]. Journal of Xi’an Jiaotong University, 2020, 54(10): 174-184 (in Chinese). | |
18 | MOHILT M, BENAFAN O. Spanwise adaptive wing: AFRC-E-DAA-TN46764[R]. Washington D.C.: NASA, 2017. |
19 | SMITH M S, SANDWICH C, ALLEY N R. Aerodynamic Analyses in Support of the Spanwise Adaptive Wing Project: AFRC-E-DAA-TN57436[R]. Atlanta: AIAA Aviation, 2018. |
20 | MAROUF A, SIMIRIOTIS N, T? J B, et al. Smart morphing and sensing for the wings of the future[M]. Berlin: Cham: Springer International Publishing, 2022: 17-36. |
21 | CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of mission adaptive digital composite aerostructure technologies (MADCAT)[C]∥ Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: AIAA2017-4273. |
22 | AIRBUS S E. Airbus launches extra high performance wing demonstrator to fortify decarbonisation ambition[EB/OL]. [2023-10-31]. . |
23 | 杨森, 刘峰, 聂瑞, 等. 变体飞行器智能材料驱动器和柔性蒙皮研究进展[J/OL]. 航空工程进展: 1-13 [2023-10-12]. . |
YANG S, LIU F, NIE R, et al. Review of smart materials actuator and flexible skin for morphing aircraft[J/OL]. Advances in Aeronautical Science and Engineering: 1-13 [2023-10-12]. (in Chinese). | |
24 | 吴斌, 杜旭朕, 汪嘉兴. 变体飞机智能结构技术进展[J]. 航空科学技术, 2022, 33(12): 13-30. |
WU B, DU X Z, WANG J X. Smart structure technology progress of morphing aircraft[J]. Aeronautical Science & Technology, 2022, 33(12): 13-30 (in Chinese). | |
25 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
26 | 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学, 2010. |
DONG E B. Research on structure realization mechanism and some key technologies of intelligent deformable aircraft[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese). | |
27 | 白皓. 头部局部轮廓变形对增强飞行器机动性的研究[D]. 合肥: 中国科学技术大学, 2011. |
BAI H. Study on local contour deformation of head to enhance maneuverability of aircraft[D].Hefei: University of Science and Technology of China, 2011 (in Chinese). | |
28 | MILLER C G III, GNOFFO P A. Pressure distributions and shock shapes for a bent-nose biconic at incidence[J]. AIAA Journal, 1982, 20(8): 1150-1152. |
29 | LANDERS M, HALL L, AUMAN L, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds[C]∥ Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: AIAA2003-3805. |
30 | 张志勇, 陈志华, 黄振贵. 偏转头弹箭飞行特性[J]. 空气动力学学报, 2017, 35(6): 883-886. |
ZHANG Z Y, CHEN Z H, HUANG Z G. Flight characteristics of deflected nose projectile[J]. Acta Aerodynamica Sinica, 2017, 35(6): 883-886 (in Chinese). | |
31 | XU Y J, ZHIJUN WANG Z, DONG F D. Ballistic trajectory modeling for missile with deflectable nose[J]. Mechanics, 2020, 26(5): 450-456. |
32 | REN Y M, WANG S S, LI J W, et al. Aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose[J]. Defence Technology, 2019, 15(5): 758-767. |
33 | 吕硕, 张庆振, 郭云鹤, 等. 基于反步滑模的偏转弹头导弹姿态控制[J]. 空天防御, 2022, 5(4): 30-37. |
LYU S, ZHANG Q Z, GUO Y H, et al. Attitude control of missile with deflectable nose based on backstepping sliding mode control[J]. Air & Space Defense, 2022, 5(4): 30-37 (in Chinese). | |
34 | 郭玉洁. 偏转头弹箭的超声速流场与气动特性[D]. 南京: 南京理工大学, 2014. |
GUO Y J. Supersonic flow field and aerodynamic characteristics of deflection head projectile and arrow[D].Nanjing: Nanjing University of Science and Technology, 2014 (in Chinese). | |
35 | ZHANG B, WANG S S, CAO M Y, et al. Simulation and analysis on aerodynamic characteristics of deflectable nose[J]. Progress in Computational Fluid Dynamics, an International Journal, 2015, 15(5): 279. |
36 | WEI J F, LI X, WANG S S, et al. Aerodynamic characteristics and trajectory of projectile with a deflectable nose[J]. Applied Mechanics and Materials, 2014, 543-547: 16-19. |
37 | ZHANG B, WANG S S, CAO M Y, et al. Design and research of wind tunnel test for deflectable nose[J]. Applied Mechanics and Materials, 2013, 423-426: 2063-2067. |
38 | 孙健. 弹道修正引信仿生变体结构设计及气动性能研究[D]. 长春: 吉林大学, 2023. |
SUN J. Design and aerodynamic performance study of bionic variant of ballistic correction fuse[D]. Changchun: Jinlin University, 2023 (in Chinese). | |
39 | 刘吉磊. 基于单通道舵机的旋转非对称偏头气动控制技术[D]. 南京: 南京航空航天大学, 2021. |
LIU J L. Aerodynamics control technology of rotating asymmetric deflectable nose based on single-channel actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
40 | LI J L, WU J N, YAN S Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2013, 5: 590957. |
41 | ZHAO J L, WU J N, YAN S Z. Movement analysis of flexion and extension of honeybee abdomen based on an adaptive segmented structure[J]. Journal of Insect Science, 2015, 15(1): 109. |
42 | ZHAO J L, YAN S Z, WU J N. Critical structure for telescopic movement of honey bee (insecta: Apidae) abdomen: Folded intersegmental membrane[J]. Journal of Insect Science, 2016, 16(1): 79. |
43 | ZHAO J L, YAN S Z, DENG L R, et al. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2): 317-326. |
44 | WU X B, WU Z Y, LIANG L L, et al. Bio-inspired design and performance evaluation of a novel morphing nose cone for aerospace vehicles[J]. Aerospace Science and Technology, 2023, 137: 108274. |
45 | GUO J B, ZHAO C J, SONG Z G. Discussion on research status and key technologies of morphing aircraft[J]. Journal of Physics: Conference Series, 2022, 2228(1): 012021. |
46 | BOWMAN J, SANDERS B, CANNON B, et al. Development of next generation morphing aircraft structures[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1730. |
47 | 陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013, 31(1): 40-46. |
CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica, 2013, 31(1): 40-46 (in Chinese). | |
48 | 陈钱, 白鹏, 李锋. 可变形飞行器机翼两种变后掠方式及其气动特性机理[J]. 空气动力学学报, 2012, 30(5): 658-663. |
CHEN Q, BAI P, LI F. Morphing aircraft wing variable-sweep: two practical methods and their aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(5): 658-663 (in Chinese). | |
49 | 彭悟宇. 高超声速飞行器气动变形方案设计与外形优化方法研究[D]. 长沙: 国防科技大学, 2019. |
PENG W Y. Research on aerodynamic deformation scheme design and shape optimization method of hypersonic vehicle[D].Changsha: National University of Defense Technology, 2019 (in Chinese). | |
50 | 李惠璟. 变体飞行器气动性能分析与布局研究[D]. 西安: 西北工业大学, 2021. |
LI H J. Aerodynamic performance analysis and configuration study of morphing aircraft[D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese). | |
51 | DAI P, YAN B B, HUANG W, et al. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider[J]. Aerospace Science and Technology, 2020, 98: 105703. |
52 | 陈钱, 尹维龙, 白鹏, 等. 变后掠变展长翼身组合体系统设计与特性分析[J]. 航空学报, 2010, 31(3): 506-513. |
CHEN Q, YIN W L, BAI P, et al. System design and characteristics analysis of a variable-sweep and variable-span wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 506-513 (in Chinese). | |
53 | 肖洪, 郭宏伟, 张蒂, 等. 一种基于四面体单元的变形翼骨架设计与分析[J]. 航空学报, 2022, 43(7): 425391. |
XIAO H, GUO H W, ZHANG D, et al. Design and analysis of morphing wing skeleton based on tetrahedral element[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425391 (in Chinese). | |
54 | 陈钱, 白鹏, 李锋. 飞行器变后掠过程非定常气动特性形成机理[J]. 力学学报, 2013, 45(3): 307-313. |
CHEN Q, BAI P, LI F. Study on the formation mechanisms of unsteady aerodynamic characteristics of morphing flight vehicle in sweep-varying process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 307-313 (in Chinese). | |
55 | ZHAO J C, ZENG L F, SHAO X M. A novel prediction method for unsteady aerodynamic force on three-dimensional folding wing aircraft[J]. Aerospace Science and Technology, 2023, 137: 108287. |
56 | MOORE M, FREI D. X-29 forward swept wing aerodynamic overview[C]∥ Proceedings of the Applied Aerodynamics Conference. Reston: AIAA, 1983: AIAA1983-1834. |
57 | NEWMAN B A, SWAIM R L. Classical flight dynamics of a variable forward-sweep-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(3): 352-356. |
58 | 刘文法, 王旭, 米康. 一种新的变前掠翼无人机气动布局[J]. 航空学报, 2009, 30(5): 832-836. |
LIU W F, WANG X, MI K. A new aerodynamic configuration of UAV with variable forward-swept wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 832-836 (in Chinese). | |
59 | 刘文法, 王旭, 刘雄. 变前掠翼布局气动特性及流动机理研究[J]. 空气动力学学报, 2010, 28(5): 559-564. |
LIU W F, WANG X, LIU X. Aerodynamic characteristics and flow mechanism of the configuration with variable forward-swept wing[J]. Acta Aerodynamica Sinica, 2010, 28(5): 559-564 (in Chinese). | |
60 | 王旭, 黄萌, 任智静, 等. 前掠翼与平直翼布局气动特性的比较分析[J]. 空军工程大学学报(自然科学版), 2011, 12(4): 1-4. |
WANG X, HUANG M, REN Z J, et al. Comparison and analysis on the aerodynamic characteristics of forward swept and orthogonal wing configurations[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(4): 1-4 (in Chinese). | |
61 | ZHANG K, TAIRA K. Laminar vortex dynamics around forward-swept wings[J]. Physical Review Fluids, 2022, 7(2): 024704. |
62 | 刘文法, 王旭, 米康. 前掠翼与后掠翼布局流动机理的数值研究[J]. 空军工程大学学报(自然科学版), 2008, 9(6): 11-15. |
LIU W F, WANG X, MI K. The numerical research on flow mechanism of forward-swept wing and backward-swept wing configurations[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(6): 11-15 (in Chinese). | |
63 | 叶露. 变掠翼无尾飞机气动布局设计研究[J]. 飞行力学, 2019, 37(2): 36-40. |
YE L. Research of variable forward-sweep wing tailless aircraft aerodynamic configuration design[J]. Flight Dynamics, 2019, 37(2): 36-40 (in Chinese). | |
64 | CORCIONE S, CUSATI V, MEMMOLO V, et al. Impact at aircraft level of elastic efficiency of a forward-swept tailplane[J]. Aerospace Science and Technology, 2023, 140: 108461. |
65 | 刘瑜, 吕凡熹, 周进. XB-70飞行器折叠机翼总体性能分析[J]. 航空科学技术, 2022, 33(12): 47-53. |
LIU Y, LYU F X, ZHOU J. Overall performance analysis on XB-70 folding wingtip system[J]. Aeronautical Science & Technology, 2022, 33(12): 47-53 (in Chinese). | |
66 | IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-2235. |
67 | 袁明川, 史志伟, 程克明. 折叠翼变体飞行器非定常气动特性实验研究[J]. 实验流体力学, 2013, 27(6): 14-18. |
YUAN M C, SHI Z W, CHENG K M. Research on unsteady aerodynamic characteristics of folding wing aircraft by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 14-18 (in Chinese). | |
68 | 郭秋亭, 张来平, 常兴华, 等. 变形飞机动态气动特性数值模拟研究[J]. 空气动力学学报, 2011, 29(6): 744-750. |
GUO Q T, ZHANG L P, CHANG X H, et al. Numerical simulation of dynamic aerodynamic characteristics of a morphing aircraft[J]. Acta Aerodynamica Sinica, 2011, 29(6): 744-750 (in Chinese). | |
69 | 郭述臻, 郑祥明, 尹崇, 等. 折叠翼飞机的气动特性分析[J]. 航空工程进展, 2013, 4(3): 358-363. |
GUO S Z, ZHENG X M, YIN C, et al. Aerodynamic performance analysis of folding-wing aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3): 358-363 (in Chinese). | |
70 | 金鼎, 张炜, 艾俊强. 折叠机翼变体飞机纵向操纵性与稳定性研究[J]. 飞行力学, 2011, 29(1): 5-8, 12. |
JIN D, ZHANG W, AI J Q. Study on longitudinal maneuverability and stability of folding wing morphing aircraft[J]. Flight Dynamics, 2011, 29(1): 5-8, 12 (in Chinese). | |
71 | 尹文强, 安然, 安玉娇. 飞翼布局折叠机翼变体飞机操稳特性研究[J]. 飞行力学, 2015, 33(6): 495-499. |
YIN W Q, AN R, AN Y J. Study on controllability and stability of flying wing and folding wing morphing aircraft[J]. Flight Dynamics, 2015, 33(6): 495-499 (in Chinese). | |
72 | 王晨, 杨洋, 沈星, 等. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报, 2022, 43(6): 526146. |
WANG C, YANG Y, SHEN X, et al. An equivalent strength model of corrugated panel and optimization design for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese). | |
73 | 昌敏, 孙杨, 白俊强, 等. 平角旋转机构约束的管射无人机二次折叠翼气动优化设计[J]. 航空学报, 2022, 43(11): 463-474. |
CHANG M, SUN Y, BAI J Q, et al. Aerodynamic design optimization of twice folding wing for tube-launched UAV constrained by flat-angle rotation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 463-474 (in Chinese). | |
74 | WEISSHAAR T. Morphing aircraft technology - new shapes for aircraft design: RTO-MP-AVT-141 [R]. Indiana: Aeronautics and Astronautics Department Purdue University, 2006 |
75 | BAE J S, SEIGLER T M, INMAN D, et al. Aerodynamic and aeroelastic considerations of a variable-span morphing wing[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: AIAA2004-1726. |
76 | KHEONG B L, JACOB J. In flight aspect ratio morphing using inflatable wings[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: AIAA2008-425. |
77 | SAMUEL J B, PINES D. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles[J]. Journal of Aircraft, 2007, 44(4): 1088-1099. |
78 | JONES R T. The minimum drag of thin wings in frictionless flow[J]. Journal of the Aeronautical Sciences, 1951, 18(2): 75-81. |
79 | 马经忠, 肖毅, 万俊明, 等. 斜置翼飞机转掠升阻特性试验研究[J]. 气动研究与试验, 2023, 1(2): 90-95. |
MA J Z, XIAO Y, WAN J M, et al. Experimental study on lift drag characteristics of oblique wing aircraft[J]. Aerodynamic Research & Experiment, 2023, 1(2): 90-95 (in Chinese). | |
80 | VANDERVELDEN A, KROO I. The aerodynamic design of the oblique flying wing supersonic transport[R]. Washington D.C.: NASA, 1990. |
81 | 程思野, 高正红. 斜置机翼技术的研究与发展[J]. 飞行力学, 2008, 26(2): 1-4. |
CHENG S Y, GAO Z H. Research and development of oblique wing technique[J]. Flight Dynamics, 2008, 26(2): 1-4 (in Chinese). | |
82 | MCGOWAN A R, VICROY D, BUSAN R C, et al. Perspectives on highly adaptive or morphing aircraft[R]. Washington D.C.: NASA, 2009 |
83 | 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1): 46-53. |
CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1): 46-53 (in Chinese). | |
84 | 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 024943. |
WANG B W, YANG Y, QIAN Z S, et al. Technical development of variable camber wing: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024943 (in Chinese). | |
85 | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335. |
LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 127335 (in Chinese). | |
86 | 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展, 2022, 13(5): 1-13. |
WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1-13 (in Chinese). | |
87 | SHARDA S Y, NAIR M, KHAN R. Design of E-VTOL aircraft with tilt-wings[D]. India: Hindustan Institute of Technology and Science, 2022. |
88 | ROTHHAAR P M, MURPHY P C, BACON B J, et al. NASA langley distributed propulsion VTOL TiltWing aircraft testing, modeling, simulation, control, and flight test development[C]∥ Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: AIAA2014-2999. |
89 | YAN X F, LOU B, XIE A H, et al. A review of advanced high-speed rotorcraft[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1102(1): 012006. |
90 | HA T H, LEE K, HWANG J T. Large-scale design-economics optimization of eVTOL concepts for urban air mobility[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA2019-1218. |
91 | 季逸民. 多桨倾转机翼无人机飞行动力学建模与控制方法研究[D]. 西安: 西北工业大学, 2022. |
JI Y M. Research on flight dynamics modeling and control method of multi rotor tilt wing UAV[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
92 | 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, doi: 10.7527/1000-6893.2023.29085 . |
DENG J H. Key technologies and development for high speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/1000-6893.2023.29085 (in Chinese). | |
93 | 程毅, 赵金瑞, 黄水林, 等. 分布式多旋翼/倾转机翼气弹耦合动特性研究[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2023.0623 . |
CHENG Y, ZHAO J R, HUANG S L, et al. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2023.0623 (in Chinese). | |
94 | 刘泽宇, 招启军, 张夏阳, 等. 倾转机翼无人倾转旋翼机飞行动力学稳定性分析[J]. 飞行力学, 2021, 39(3): 1-7. |
LIU Z Y, ZHAO Q J, ZHANG X Y, et al. Analysis of flight dynamics stability of unmanned tilt-rotor aircraft with tilting wings[J]. Flight Dynamics, 2021, 39(3): 1-7 (in Chinese). | |
95 | 史金帅, 方昕卓异, 张夏阳, 等. 倾转旋翼机过渡状态飞行速度对气动性能的影响[J]. 飞行力学, 2023, 41(2): 1-6. |
SHI J S, FANG X, ZHANG X Y, et al. Influence of flight speed in transition state on aerodynamic performance of tiltrotor aircraft[J]. Flight Dynamics, 2023, 41(2): 1-6 (in Chinese). | |
96 | 刘纪福, 马东林, 罗骏. 小型多桨倾转机翼飞行器倾转过渡特性风洞试验研究[J]. 直升机技术, 2023(1): 29-33, 40. |
LIU J F, MA D L, LUO J. Wind-tunnel testing on tilting flight mode characteristics of a small distributed propulsion VTOL tilt-wing aircraft[J]. Helicopter Technique, 2023(1): 29-33, 40 (in Chinese). | |
97 | 袁长龙, 弓升, 于萍, 等. 短距起飞/垂直降落飞机外流场特性研究[J]. 燃气涡轮试验与研究, 2016, 29(6): 10-15. |
YUAN C L, GONG S, YU P, et al. External flow field performance study of STOVL aircraft[J]. Gas Turbine Experiment and Research, 2016, 29(6): 10-15 (in Chinese). | |
98 | 顾韵. 一种发动机可变进气道的设计及优化[D]. 天津: 中国民航大学, 2021. |
GU Y. Design and optimization of an engine variable intake port[D].Tianjin: Civil Aviation University of China, 2021 (in Chinese). | |
99 | WEIR L, SANDERS B, VACHON J. A new design concept for supersonic axisymmetric inlets[C]∥ Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002: AIAA2002-3775. |
100 | 滕健, 袁化成. 一种轴对称变几何进气道设计方法[J]. 航空动力学报, 2013, 28(1): 96-103. |
TENG J, YUAN H C. Design methodology of axisymmetric variable geometry inlet[J]. Journal of Aerospace Power, 2013, 28(1): 96-103 (in Chinese). | |
101 | MARU Y, TANATSUGU N, SATO T, et al. Multi-row disk arrangement concept for spike of axisymmetric air inlet[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004: AIAA2004-3407. |
102 | 宁啸天, 辜天来, 田亚洲, 等. 一种轴对称变几何进气道气动设计及性能分析[J]. 固体火箭技术, 2021, 44(6): 783-792. |
NING X T, GU T L, TIAN Y Z, et al. Aerodynamic design and performance analysis of an axisymmetric variable geometry inlet[J]. Journal of Solid Rocket Technology, 2021, 44(6): 783-792 (in Chinese). | |
103 | 金志光, 张堃元. 宽马赫数范围高超声速进气道伸缩唇口式变几何方案[J]. 宇航学报, 2010, 31(5): 1503-1510. |
JIN Z G, ZHANG K Y. A variable geometry scramjet inlet with a translating cowl operating in a large Mach number range[J]. Journal of Astronautics, 2010, 31(5): 1503-1510 (in Chinese). | |
104 | 朱呈祥, 黄国平, 尤延铖, 等. 内乘波式进气道与典型侧压式进气道的性能对比[J]. 推进技术, 2011, 32(2): 151-158. |
ZHU C X, HUANG G P, YOU Y C, et al. Performance comparison between internal waverider inlet and typical sidewall compression inlet[J]. Journal of Propulsion Technology, 2011, 32(2): 151-158 (in Chinese). | |
105 | 戎佳欣. 自适应鼓包进气道结构的柔性蒙皮技术研究[D]. 南京: 南京航空航天大学, 2018. |
RONG J X. Study on flexible skin technology of adaptive bulging inlet structure[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
106 | 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946. |
ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese). | |
107 | 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256. |
AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256 (in Chinese). | |
108 | 杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262. |
DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii, 2023, 44(8): 2245-2262 (in Chinese). | |
109 | WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
110 | ZHOU W, MA P Y, WEI B B, et al. Experimental study on aerodynamic characteristics of fixed-wing UAV air docking[J]. Aerospace Science and Technology, 2023, 137: 108257. |
111 | 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15. |
YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: Innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). | |
112 | 张旭辉, 解春雷, 刘思佳, 等. 智能变形飞行器发展需求及难点分析[J]. 航空学报, doi: 10.7527/1000-6893.2023.29302 . |
ZHANG X H, XIE C L, LIU S J, al e. Development needs and difficulty analysis for smart morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/1000-6893.2023. 29302 (in Chinese). | |
113 | 马高杰, 安刚, 史佑民, 等. 民用飞机高升力系统先进技术及发展[J]. 航空学报, 2023, 44(): 6-19. |
MA G J, AN G, SHI Y M, et al. Advanced technology and development of civil aircraft high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(Sup 1): 6-19 (in Chinese). | |
114 | LIU C Z, BAI P, TIAN J W, et al. Nonlinearity analysis of increase in lift of double swept waverider[J]. AIAA Journal, 2020, 58(1): 304-314. |
115 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
116 | 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J], 航空学报, 2023, 44(24): 128441. |
CHEN S S, ZHANG Z K, LI J P, et al. A wide-speed aerodynamic layout adopting waverider-delta wing [J].Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese). | |
117 | ZHAO Z T, HUANG W, YAN L, et al. An overview of research on wide-speed range waverider configuration[J]. Progress in Aerospace Sciences, 2020, 113: 100606. |
118 | 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86. |
XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese). | |
119 | DAI P, FENG D Z, ZHAO J Q, et al. Asymmetric integral barrier Lyapunov function-based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator[J]. Aerospace Science and Technology, 2022, 131: 107975. |
120 | DAI P, YAN B B, LIU R F, et al. Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider[J]. IEEE Access, 2021, 9: 63510-63520. |
121 | DAI P, YAN B B, HAN T, et al. Barrier Lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3071-3081. |
122 | KANAT ? ?, KARATAY E, K?SE O, et al. Combined active flow and flight control systems design for morphing unmanned aerial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5393-5402. |
123 | Lü X Z, YUAN C, BAO W M, et al. Numerical and experimental investigation of aerodynamic heat control of leading edge of hypersonic vehicle’s flexible skin[J]. Science China Information Sciences, 2022, 65(10): 1-14. |
124 | 曾品棚, 陈树生, 李金平, 等. 减阻杆与环形喷流组合构型钝头降热数值模拟[J]. 航空学报, 2023, 44(22): 124-135. |
ZENG P P, CHEN S S, LI J P, et al. Numerical simulation of heat reduction on blunt-headed bodies by combined scheme of drag reduction spike and annular jets[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 124-135 (in Chinese). | |
125 | 朱广生, 姚世勇, 段毅. 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报, 2023, 44(15): 9-24. |
ZHU G S, YAO S Y, DUAN Y. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 9-24 (in Chinese). | |
126 | 张良阳, 李占科, 韩海洋. 微型无人机栖息设计技术综述[J]. 航空学报, 2023, 44(12): 24-49. |
ZHANG L Y, LI Z K, HAN H Y. A review of perching technology of micro-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 24-49 (in Chinese). | |
127 | PETERS C, ROTH B, CROSSLEY W, et al. Use of design methods to generate and develop missions for morphing aircraft[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002: AIAA2002-5468. |
128 | TALLEY D, SCHELLPFEFFER N, JOHNSON C, et al. Methodology for the mission requirement determination and conceptual design of a morphing UCAV[C]∥ Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. Reston: AIAA, 2004: AIAA2004-6597. |
129 | FROMMER J, CROSSLEY W. Enabling continuous optimization for sizing morphing aircraft concepts[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: AIAA2005-816. |
130 | ZHANG Y L, WU H Y, ZHAO J L, et al. Design and performance analysis of morphing nose cone driven by a novel bionic parallel mechanism for aerospace vehicle[J]. Aerospace Science and Technology, 2023, 139: 108365. |
131 | NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Aerodynamic optimization of a morphing airfoil using energy as an objective[J]. AIAA Journal, 2007, 45(9): 2113-2124. |
132 | LIU B, LIANG H A, HAN Z H, et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range[J]. Aerospace Science and Technology, 2022, 124: 107557. |
133 | AUTERI F, SAVINO A, ZANOTTI A, et al. Experimental evaluation of the aerodynamic performance of a large-scale high-lift morphing wing[J]. Aerospace Science and Technology, 2022, 124: 107515. |
134 | HUANG C, YANG C, WU Z G, et al. Variations of flutter mechanism of a span-morphing wing involving rigid-body motions[J]. Chinese Journal of Aeronautics, 2018, 31(3): 490-497. |
135 | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346. |
YU S J, ZHOU X H, HUANG R. Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 227346 (in Chinese). | |
136 | ZHANG W, LV S L, NI Y G. Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints[J]. Nonlinear Dynamics, 2018, 92(2): 169-179. |
137 | CHEUNG R C, REZGUI D, COOPER J E, et al. Testing of folding wing-tip for gust load alleviation in high aspect ratio wing[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA2019-1863. |
138 | 陈钱, 白鹏, 陈农, 等. 滑动蒙皮变后掠无人机非定常气动特性研究[J]. 空气动力学学报, 2011, 29(5): 645-650. |
CHEN Q, BAI P, CHEN N, et al. Investigation on the unsteady aerodynamic characteristics of sliding-skin variable-sweep morphing unmanned aerial vehicle[J]. Acta Aerodynamica Sinica, 2011, 29(5): 645-650 (in Chinese). | |
139 | ZENG L F, LIU L, SHAO X M, et al. Mechanism analysis of hysteretic aerodynamic characteristics on variable-sweep wings[J]. Chinese Journal of Aeronautics, 2023, 36(5): 212-222. |
140 | 吕侦军, 卢志毅, 陈庆民, 等. 高速变翼面飞行器研究现状及关键气动技术[J]. 空天技术, 2022(6): 49-56, 76. |
LYU Z J, LU Z Y, CHEN Q M, et al. Research status and key aerodynamic technology of high speed variable wing vehicle[J]. Aerospace Technology, 2022(6): 49-56, 76 (in Chinese). | |
141 | HUANG R, HU H Y, ZHAO Y H. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems[J]. AIAA Journal, 2014, 52(6): 1219-1231. |
142 | HUANG R, LI H K, HU H Y, et al. Open/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models[J]. AIAA Journal, 2015, 53(7): 1812-1824. |
143 | 寇家庆. 非定常气动力建模与流场降阶方法研究[D]. 西安: 西北工业大学, 2018. |
KOU J Q. Study on unsteady aerodynamic modeling and flow field reduction method[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
144 | 赵嘉墀, 王天琪, 曾丽芳, 等. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256. |
ZHAO J C, WANG T Q, ZENG L F, et al. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1251-1256 (in Chinese). | |
145 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
146 | LIVNE E. Aircraft active flutter suppression: state of the art and technology maturation needs[J]. Journal of Aircraft, 2018, 55(1): 410-452. |
147 | 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071. |
ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071 (in Chinese). | |
148 | NEAL D, FARMER J, INMAN D. Development of a morphing aircraft model for wind tunnel experimentation[C]∥ Proceedings of the 47th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: AIAA2006-2141. |
149 | 刘志涛, 蒋永, 聂博文, 等. 弯折翼尖对飞翼布局飞机气动特性影响[J]. 航空学报, 2021, 42(6): 124179. |
LIU Z T, JIANG Y, NIE B W, et al. Effect of bendable wing tip on aerodynamic characteristics of flying-wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124179 (in Chinese). | |
150 | PANAGIOTOU P, ANTONIOU S, YAKINTHOS K. Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV[J]. Aerospace Science and Technology, 2022, 123: 107467. |
151 | 魏其. 变体飞行器多物理场耦合分析[D]. 西安: 西北工业大学, 2017. |
WEI Q. Multidiscipline coupled-field analysis of morphing aircraft[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
152 | ZHANG T T, WANG Z G, HUANG W, et al. A review of parametric approaches specific to aerodynamic design process[J]. Acta Astronautica, 2018, 145: 319-331. |
153 | LIU D, CHEN P C, ZHANG Z C, et al. Continuous dynamic simulation for morphing wing aeroelasticity[C]∥ Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: AIAA2009-2572. |
154 | 王荣, 白鹏. 基于FFD与网格重构的飞翼无人机外形优化设计[J]. 航空科学技术, 2018, 29(10): 43-47. |
WANG R, BAI P. Aerodynamic design optimization for a flying-wing UAV based on FFD and grid reconstruction[J]. Aeronautical Science & Technology, 2018, 29(10): 43-47 (in Chinese). | |
155 | ROTH B, CROSSLEY W. Application of optimization techniques in the conceptual design of morphing aircraft[C]∥ Proceedings of the AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum. Reston: AIAA, 2003: AIAA2003-6733. |
156 | BASHIR M, LONGTIN MARTEL S, BOTEZ R M, et al. Aerodynamic shape optimization of camber morphing airfoil based on black widow optimization[C]∥ Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: AIAA2022-2575. |
157 | NEGAHBAN M H, BASHIR M, BOTEZ R M. Aerodynamic optimization of a novel synthetic trailing edge and chord elongation morphing: application to the UAS-S45 airfoil[C]∥ Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023: AIAA2023-1582. |
158 | LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J]. Journal of Aircraft, 2015, 52(6): 1951-1970. |
159 | BURDETTE D A, MARTINS J R R A. Impact of morphing trailing edges on mission performance for the common research model[J]. Journal of Aircraft, 2019, 56(1): 369-384. |
160 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
161 | WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3538-3552. |
162 | JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. |
163 | 战庆亮, 刘鑫, 白春锦, 等. 考虑物理方程约束的机器学习流场时程表征方法[J]. 工程力学, doi: 10.6052/j.issn.1000-4750.2022.12.1067 . |
ZHAN Q L, LIU X, BAI C J, et al. Physical constrained flow representation model using machine learning for flow time history[J]. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2022.12.1067 (in Chinese). | |
164 | LI R Z, ZHANG Y F, CHEN H X. Transfer learning from two-dimensional supercritical airfoils to three-dimensional transonic swept wings[J]. Chinese Journal of Aeronautics, 2023, 36(9): 96-110. |
165 | CHEN X Y, LI C N, GONG C L, et al. A study of morphing aircraft on morphing rules along trajectory[J]. Chinese Journal of Aeronautics, 2021, 34(7): 232-243. |
166 | 杜厦, 昂海松. 变体平尾翼型气动外形设计方法[J]. 南京航空航天大学学报, 2012, 44(6): 780-785. |
DU S, ANG H S. Airfoil aerodynamic optimization method of morphing horizontal stabilizer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 780-785 (in Chinese). | |
167 | 高飞云. 新概念变形飞行器建模与飞行方案优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
GAO F Y. Modeling and flight scheme optimization design of new concept morphing aircraft[D].Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
168 | 吕吉婵. 变后掠翼身组合体的最佳变后掠规律研究[D]. 南昌: 南昌航空大学, 2016. |
Lü/LV/LU/LYU) J C. Study on the optimal law of variable sweep wing-body combination[D].Nanchang: Nanchang Hangkong University, 2016 (in Chinese). | |
169 | GONG L G, WANG Q, HU C H, et al. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 672-687. |
170 | XU W F, LI Y H, PEI B B, et al. Coordinated intelligent control of the flight control system and shape change of variable sweep morphing aircraft based on dueling-DQN[J]. Aerospace Science and Technology, 2022, 130: 107898. |
171 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
172 | SAMAREH J, CHWALOWSKI P, HORTA L, et al. Integrated aerodynamic/structural/dynamic analyses of aircrafts with large shape changes[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-2346. |
173 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
174 | 詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模[J]. 力学学报, 2021, 53(4): 1103-1113. |
ZHAN J Y, ZHOU X H, HUANG R. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113 (in Chinese). | |
175 | HUANG R, YANG Z J, YAO X J, et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing[J]. AIAA Journal, 2019, 57(12): 5543-5552. |
176 | 李铭琦. 基于热流固多场耦合分析的剪切式滑动蒙皮变后掠翼设计与优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LI M Q. Design and optimization of variable swept wing with shear sliding skin based on heat flow-solid multi-field coupling analysis[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
177 | 任浩源, 王毅, 王亮, 等. 基于热/力试验的折叠舵连接刚度与颤振分析[J]. 航空学报, 2023, 44(14): 183-199. |
REN H Y, WANG Y, WANG L, et al. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 183-199 (in Chinese). | |
178 | 武宇飞, 龙腾, 史人赫, 等. 跨域变体飞行器气动力热非层次多模型融合降阶方法[J]. 航空学报, 2023, 44(21): 528259. |
WU Y F, LONG T, SHI R H, et al. Non?hierarchical multi?model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross?domain morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259 (in Chinese). |
/
〈 |
|
〉 |