ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Spacecraft game decision making for threat avoidance of space targets based on machine learning
Received date: 2023-06-06
Revised date: 2023-08-22
Accepted date: 2023-11-02
Online published: 2023-11-16
Supported by
National Natural Science Foundation of China(12072269);Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory(6142210210302)
An intelligent decision-making framework and a deep reinforcement learning-based autonomous decision-making method are proposed for the spacecraft decision-making in avoiding the threat of space targets. Taking into account the maneuvering characteristics of space targets and the gameplay of threat avoidance, an intelligent game decision-making framework for spacecraft threat avoidance is proposed based on the Observation-Orientation-Decision-Action (OODA) loop decision-making idea and machine learning techniques. Based on this framework and inference on the motion intentions of space targets, a deep reinforcement learning-based spacecraft maneuver decision-making algorithm and training environment are designed to enable spacecraft decision-making control with game response capability, which realizes the avoidance response to the typical motion intentions of space targets. Furthermore, the generalization of spacecraft autonomous maneuvering decision-making algorithm and its adaptability to possible uncertain maneuvers of space targets are improved by using the self-play learning technique. Finally, the effectiveness of our proposed method is verified through simulations.
Honglin ZHANG , Jianjun LUO , Weihua MA . Spacecraft game decision making for threat avoidance of space targets based on machine learning[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(8) : 329136 -329136 . DOI: 10.7527/S1000-6893.2023.29136
1 | 袁利, 姜甜甜. 航天器威胁规避智能自主控制技术研究综述[J]. 自动化学报, 2023, 49(2): 229-245. |
YUAN L, JIANG T T. Review on intelligent autonomous control for spacecraft confronting orbital threats[J]. Acta Automatica Sinica, 2023, 49(2): 229-245 (in Chinese). | |
2 | 袁利. 面向不确定环境的航天器智能自主控制技术[J]. 宇航学报, 2021, 42(7): 839-849. |
YUAN L. Spacecraft intelligent autonomous control technology toward uncertain environment[J]. Journal of Astronautics, 2021, 42(7): 839-849 (in Chinese). | |
3 | 王杰, 丁达理, 董康生, 等. UCAV自主空战战术机动动作建模与轨迹生成[J]. 火力与指挥控制, 2018, 43(12): 42-49. |
WANG J, DING D L, DONG K S, et al. UCAV autonomous air combat tactical maneuvering modeling and trajectory generation[J]. Fire Control & Command Control, 2018, 43(12): 42-49 (in Chinese). | |
4 | 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1): 320202. |
YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 320202 (in Chinese). | |
5 | BOMBARDELLI C. Analytical formulation of impulsive collision avoidance dynamics[J]. Celestial Mechanics and Dynamical Astronomy, 2014, 118(2): 99-114. |
6 | GONZALO J L, COLOMBO C, DI LIZIA P. Analytical framework for space debris collision avoidance maneuver design[J]. Journal of Guidance, Control, and Dynamics, 2020, 44(3): 469-487. |
7 | BATHER J A, ISAACS R. Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization[J]. Journal of the Royal Statistical Society Series A (General), 1966, 129(3): 474. |
8 | PRINCE E R, HESS J A, COBB R G, et al. Elliptical orbit proximity operations differential games[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(7): 1458-1472. |
9 | LIANG L, DENG F, PENG Z H, et al. A differential game for cooperative target defense[J]. Automatica, 2019, 102: 58-71. |
10 | SUN J L, LIU C S, YE Q. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive dynamic programming[J]. International Journal of Control, 2017, 90(5): 990-1004. |
11 | WATANABE T, JOHNSON E N. Trajectory generation using deep neural network: AIAA-2018-1893[R]. Reston: AIAA, 2018. |
12 | IZZO D, TAILOR D, VASILEIOU T. On the stability analysis of deep neural network representations of an optimal state-feedback[DB/OL]. arXiv preprint: 1812.02532, 2018. |
13 | SáNCHEZ-SáNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. |
14 | OESTREICH C E, LINARES R, GONDHALEKAR R. Autonomous six-degree-of-freedom spacecraft docking with rotating targets via reinforcement learning[J]. Journal of Aerospace Information Systems, 2021, 18(7): 417-428. |
15 | 刘冰雁, 叶雄兵, 高勇, 等. 基于分支深度强化学习的非合作目标追逃博弈策略求解[J]. 航空学报, 2020, 41(10): 324040. |
LIU B Y, YE X B, GAO Y, et al. Strategy solution of non-cooperative target pursuit-evasion game based on branching deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324040 (in Chinese). | |
16 | ZHANG J R, ZHANG K P, ZHANG Y, et al. Near-optimal interception strategy for orbital pursuit-evasion using deep reinforcement learning[J]. Acta Astronautica, 2022, 198: 9-25. |
17 | 赵毓, 郭继峰, 颜鹏, 等. 稀疏奖励下多航天器规避决策自学习仿真[J]. 系统仿真学报, 2021, 33(8): 1766-1774. |
ZHAO Y, GUO J F, YAN P, et al. Self-learning-based multiple spacecraft evasion decision making simulation under sparse reward condition[J]. Journal of System Simulation, 2021, 33(8): 1766-1774 (in Chinese). | |
18 | ZHANG H L, LUO J J, GAO Y, et al. An intention inference method for the space non-cooperative target based on BiGRU-Self Attention[J]. Advances in Space Research, 2023, 72(5): 1815-1828. |
19 | 黎飞, 雷拥军, 冯佳佳. 一种GEO卫星太阳光遮挡轨迹设计与控制方法[J]. 宇航学报, 2022, 43(2): 198-205. |
LI F, LEI Y J, FENG J J. A design and control method of Sun occlusion trajectory for GEO satellite[J]. Journal of Astronautics, 2022, 43(2): 198-205 (in Chinese). | |
20 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
/
〈 |
|
〉 |