ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mechanical behavior of aerostat envelope and constitutive modeling
Received date: 2023-09-15
Revised date: 2023-09-25
Accepted date: 2023-10-30
Online published: 2023-11-09
Supported by
National Key Research and Development Program of China(2021YFF0501800);National Natural Science Foundation of China(11972185);Natural Science Foundation of Jiangsu Province(BK20200409);The High Level Personnel Project of Jiangsu Province(JSSCBS20210618);The Fundamental Research Funds for the Central Universities(NT2022001);China Postdoctoral Science Foundation(2022M721609)
To meet the requirements of load-bearing and special environmental adaptability, the envelope of near-space operational aerostats consists of multiple layers, such as high-performance fiber fabrics, helium barrier layers, weather layers, and adhesive layers. Since the internal pressure inside the envelope directly determines load-bearing capacity of the aerostat, it is necessary to develop a reliable constitutive model to predict the equivalent mechanical properties of the envelope, which therefore, lays the foundation for strength and life evaluations of the airship. Effects of fiber fabrics and functional layers on the equivalent mechanical properties of the envelope were investigated by experimental characterizations. Based on experimental results, an equivalent constitutive model was developed to study the anisotropic and nonlinear mechanical behavior of the envelope. For both uniaxial and off-axis tensile conditions, predictions on the effective stress, yarn shear angle and specimen cross-sectional contraction agree well with experimental results. The combined experimental and numerical studies have led to insightful understanding between the overall mechanical response and microstructure deformation of the envelope.
Yunchao XIA , Jian DENG , Zengxian WANG , Qiang LIU , Tianjian LU . Mechanical behavior of aerostat envelope and constitutive modeling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 229588 -229588 . DOI: 10.7527/S1000-6893.2023.29588
1 | 谭惠丰, 刘羽熙, 刘宇艳, 等. 临近空间飞艇蒙皮材料研究进展和需求分析[J]. 复合材料学报, 2012, 29(6): 1-8. |
TAN H F, LIU Y X, LIU Y Y, et al. Research progress and requirement analysis of envelope materials for near space airship[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 1-8 (in Chinese). | |
2 | 谭惠丰, 王超, 王长国. 实现结构轻量化的新型平流层飞艇研究进展[J]. 航空学报, 2010, 31(2): 257-264. |
TAN H F, WANG C, WANG C G. Progress of new type stratospheric airships for realization of lightweight[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 257-264 (in Chinese). | |
3 | 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. |
ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56 (in Chinese). | |
4 | ZUO Z Y, SONG J W, ZHENG Z W, et al. A survey on modelling, control and challenges of stratospheric airships[J]. Control Engineering Practice, 2022, 119: 104979. |
5 | ZHAO B, HU J H, CHEN W J, et al. A nonlinear uniaxial stress-strain constitutive model for viscoelastic membrane materials[J]. Polymer Testing, 2020, 90: 106633. |
6 | CHEN J W, CHEN W J, WANG M Y, et al. Mechanical behaviors and elastic parameters of laminated fabric URETEK3216LV subjected to uniaxial and biaxial loading[J]. Applied Composite Materials, 2017, 24(5): 1107-1136. |
7 | WANG F X, CHEN Y L, XU W L, et al. Experimental study on uniaxial tensile and welding performance of a new coated fabric for airship envelopes[J]. Journal of Industrial Textiles, 2017, 46: 1474-1497. |
8 | 鲁国富, 邱振宇, 高成军, 等. 基于双轴拉伸试验的飞艇蒙皮材料非线性分析[J]. 复合材料学报, 2018, 35(5): 1166-1171. |
LU G F, QIU Z Y, GAO C J, et al. Nonlinear analysis based on biaxial tensile test of airship envelope fabrics[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1166-1171 (in Chinese). | |
9 | CHEN J W, CHEN W J, ZHANG D X. Experimental study on uniaxial and biaxial tensile properties of coated fabric for airship envelopes[J]. Journal of Reinforced Plastics and Composites, 2014, 33(7): 630-647. |
10 | LIU L B, CAO S, ZHU M. Mechanical characteristics of stratospheric airship envelope of vectran fibre-reinforced-laminated composite[J]. Materials Research Innovations, 2015, 19(S5): S5-606-S5-612. |
11 | GLASER R, CACCESE V. Experimental methods to determine in-plane material properties of polyurethane-coated nylon fabric[J]. Journal of the Textile Institute, 2013, 104(7): 682-698. |
12 | 何世赞, 陈务军, 高成军, 等. 浮空器蒙皮膜复合材料单轴拉伸力学性能及弹性常数[J]. 复合材料学报, 2017, 34(1): 224-230. |
HE S Z, CHEN W J, GAO C J, et al. Uni-axial tensile mechanical properties and elastic constants of airship envelope material[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 224-230 (in Chinese). | |
13 | WANG F X, CHEN Y L, LIU G Z, et al. Investigation of the tearing properties of a new airship envelope fabric based on experimental and theoretical methods[J]. Journal of Industrial Textiles, 2019, 48(8): 1327-1347. |
14 | 丁凯, 陈永霖, 陈亚飞, 等. 平流层飞艇蒙皮材料撕裂性能影响因素研究[J]. 空间结构, 2021, 27(3): 61-67. |
DING K, CHEN Y L, CHEN Y F, et al. Study on factors influencing tearing properties of stratospheric airship envelope materials[J]. Spatial Structures, 2021, 27(3): 61-67 (in Chinese). | |
15 | YOUNG L, GARDE G, STERLING W. A practical approach for scientific balloon film strain measurement using photogrammetry[C]∥Proceedings of the AIAA Balloon Systems Conference. Reston: AIAA, 2007. |
16 | LI S P, CHEN L L, SONG Y B, et al. Pressure-bearing performance of sliding poly-p-phenylene benzobisoxazole-rope-reinforced spherical composite envelope structures[J]. Thin-Walled Structures, 2022, 180: 109929. |
17 | MENG J H, LV M Y, QU Z P, et al. Mechanical properties and strength criteria of fabric membrane for the stratospheric airship envelope[J]. Applied Composite Materials, 2017, 24(1): 77-95. |
18 | 罗锡林. 国产F-12蒙皮材料性能表征及充压囊体全场形变测试方法[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
LUO X L. Mechanical properties of F-12 envelope materials and full-field deformation test method in air-inflated capsule structrue[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
19 | MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites: Micro-geometry[J]. Composites Science and Technology, 2008, 68(7-8): 1671-1678. |
20 | XIE W C, WANG X L, DUAN D P, et al. Finite element simulation of the microstructure of stratospheric airship envelopes[J]. AIAA Journal, 2020, 58(8): 3690-3699. |
21 | NILAKANTAN G, KEEFE M, WETZEL E D, et al. Computational modeling of the probabilistic impact response of flexible fabrics[J]. Composite Structures, 2011, 93(12): 3163-3174. |
22 | DINH T D, WEEGER O, KAIJIMA S, et al. Prediction of mechanical properties of knitted fabrics under tensile and shear loading: Mesoscale analysis using representative unit cells and its validation[J]. Composites Part B: Engineering, 2018, 148: 81-92. |
23 | CHEN B, COLMARS J, NAOUAR N, et al. A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106558. |
24 | GATOUILLAT S, BAREGGI A, VIDAL-SALLé E, et al. Meso modelling for composite preform shaping-Simulation of the loss of cohesion of the woven fiber network[J]. Composites Part A: Applied Science and Manufacturing,2013, 54: 135-144. |
25 | CHARMETANT A, VIDAL-SALLé E, BOISSE P. Hyperelastic modelling for mesoscopic analyses of composite reinforcements[J]. Composites Science and Technology, 2011, 71(14): 1623-1631. |
26 | KING M, JEARANAISILAWONG P, SOCRATE S. A continuum constitutive model for the mechanical behavior of woven fabrics[J]. International Journal of Solids and Structures, 2004, 42(13): 3867-3896. |
27 | EROL O, POWERS B, KEEFE M. Development of a non-orthogonal macroscale material model for advanced woven fabrics based on mesoscale structure[J]. Composites Part B: Engineering, 2017, 110: 497-510. |
28 | ZHU D J, MOBASHER B, VAIDYA A, et al. Mechanical behaviors of Kevlar 49 fabric subjected to uniaxial, biaxial tension and in-plane large shear deformation[J]. Composites Science and Technology, 2013, 74: 121-130. |
29 | H?RTEL F, HARRISON P. Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 61-69. |
/
〈 |
|
〉 |