ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Damage assessment algorithm based on deep learning and fuzzy analytic hierarchy process
Received date: 2023-08-31
Revised date: 2023-09-25
Accepted date: 2023-11-01
Online published: 2023-11-07
Supported by
National Natural Science Foundation of China(62103023);Beijing Natural Science Foundation(JQ23019)
To address the detection and assessment of military target damage, this paper proposes a two-stage damage assessment method based on deep learning and fuzzy analytic hierarchy process. Firstly, in the Yolov5-based dual-stage target detection subsystem with coordinate attention mechanism, a key region extraction mechanism is employed to extract damage components, and a damage component classifier based on the combination of intersection over union, Hungarian linear matching, and decision tree is used for classification and quantification of damage severity. Then, in the damage assessment subsystem based on the triangular fuzzy analytic hierarchy process, multiple damage assessment weight systems and damage tree criteria are designed to comprehensively consider the damage features and categories extracted from the previous stage, achieving online real-time damage assessment for targets. Experimental results show that on various simulated datasets with multiple interference factors, the Yolov5-based dual-stage target detection subsystem with the attention mechanism achieves an average improvement in detection accuracy of over 3.6% when compared to classical target fine-grained recognition algorithms. It demonstrates better performance in target key region extraction, and damage classification and assessment, providing strong support and reference for target damage assessment and military operation decision making.
Xiangxi KONG , Wenyuan QIN , Piaoyi SU , Yongzhao HUA , Xiwang DONG , Li WANG , Ying SU , Kun LYU . Damage assessment algorithm based on deep learning and fuzzy analytic hierarchy process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 329503 -329503 . DOI: 10.7527/S1000-6893.2023.29503
1 | 祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4): 524332. |
ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524332 (in Chinese). | |
2 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
3 | 裴扬, 宋笔锋, 石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1): 216-234. |
PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability: Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 216-234 (in Chinese). | |
4 | 勾涛. 基于图像分析的毁伤评估系统关键技术研究[D]. 长春: 吉林大学, 2019: 1-4. |
GOU T. Research on key technologies of damage assessment system based on image analysis[D]. Changchun: Jilin University, 2019: 1-4. (in Chinese). | |
5 | HUANG Y, SHAO C S, WU B, et al. State-of-the-art review on Bayesian inference in structural system identification and damage assessment[J]. Advances in Structural Engineering, 2019, 22(6): 1329-1351. |
6 | 刘彦, 裴晓羽, 吕中杰, 等. 基于层次分析-模糊综合评价法的相控阵雷达毁伤评估[J]. 北京理工大学学报, 2016, 36(10): 996-1000. |
LIU Y, PEI X Y, LYU Z J, et al. Damage assessment of phased array antenna based on analytic hierarchy process and fuzzy comprehensive assessment[J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 996-1000 (in Chinese). | |
7 | 周燕, 陈中, 李为民. 基于BP神经网络的弹炮结合系统作战效能评估[J]. 系统工程与电子技术, 2005, 27(1): 84-86. |
ZHOU Y, 陈中, LI W M. Evaluation of operational effectiveness for anti-aircraft Gun-missile system based on BP neural networks[J]. Systems Engineering and Electronics, 2005, 27(1): 84-86 (in Chinese). | |
8 | 曲婉嘉, 徐忠林, 张柏林, 等. 基于贝叶斯网络云模型的目标毁伤评估方法[J]. 兵工学报, 2016, 37(11): 2075-2084. |
QU W J, XU Z L, ZHANG B L, et al. Battle damage assessment method based on BN-cloud model[J]. Acta Armamentarii, 2016, 37(11): 2075-2084 (in Chinese). | |
9 | 陈麒, 祝明波, 刘旭东. 基于图像的打击效果评估研究综述[J]. 舰船电子工程, 2013, 33(4): 10-12, 27. |
CHEN Q, ZHU M B, LIU X D. Summarized of battle damage assessment based on image[J]. Ship Electronic Engineering, 2013, 33(4): 10-12, 27 (in Chinese). | |
10 | 魏鑫, 李晓婷. 基于模糊推理的综合毁伤效果评估方法[J]. 智能计算机与应用, 2022, 12(7): 146-150. |
WEI X, LI X T. Comprehensive damage effectiveness evaluation method based on fuzzy reasoning[J]. Intelligent Computer and Applications, 2022, 12(7): 146-150 (in Chinese). | |
11 | 李京, 杨根源. 基于神经网络的地面目标威胁度分析[J]. 兵工自动化, 2012, 31(3): 15-18. |
LI J, YANG G Y. Analysis of ground targets threatening level based on neural network[J]. Ordnance Industry Automation, 2012, 31(3): 15-18 (in Chinese). | |
12 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
13 | 张宗腾, 张琳, 谢春燕, 等. 基于改进GA-BP神经网络的目标毁伤效果评估[J]. 火力与指挥控制, 2021, 46(11): 43-48. |
ZHANG Z T, ZHANG L, XIE C Y, et al. Battle damage effect assessment based on improved GA-BP neural network[J]. Fire Control & Command Control, 2021, 46(11): 43-48 (in Chinese). | |
14 | 余丽山, 李彦彬, 赵永龙, 等. 基于BP神经网络的飞机抗毁伤能力评估[J]. 弹箭与制导学报, 2018, 38(1): 23-26. |
YU L S, LI Y B, ZHAO Y L, et al. Assessment of aircraft anti damage capability based on BP neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 23-26 (in Chinese). | |
15 | 朱亚红, 汪民乐, 敬斌. 基于BP神经网络的多源桥梁毁伤信息特征层融合[J]. 战术导弹技术, 2012(2): 116-121. |
ZHU Y H, WANG M L, JING B. The feature-level fusion of the multi-image damage information about the bridge based on the BP neural network[J]. Tactical Missile Technology, 2012(2): 116-121 (in Chinese). | |
16 | 徐艺博, 于清华, 王炎娟, 等. 基于多源信息融合的巡飞弹对地目标识别与毁伤评估[J]. 系统仿真学报, 2024, 36(2): 511-521. |
XU Y B, YU Q H, WANG Y J, et al. Ground target recognition and damage assessment of patrol missiles based on multi-source information fusion[J]. Journal of System Simulation, 2024, 36(2): 511-521 (in Chinese). | |
17 | XU J L, ZENG F, LIU W, et al. Damage detection and level classification of roof damage after typhoon faxai based on aerial photos and deep learning[J]. Applied Sciences, 2022, 12(10): 4912. |
18 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 13708-13717. |
19 | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2778-2788. |
20 | MILLS-TETTEY A, STENT A, DIAS M B. The dynamic Hungarian algorithm for the assignment problem with changing costs: CMU-RI-TR-07-27[R]. Pittsburgh: Carnegie Mellon University, 2007. |
21 | 彭庭睿, 刘海鹏, 刘彦, 等. 基于模糊层次分析法和图像对比毁伤评估法的目标权重计算方法[J]. 兵工学报, 2021, 42(S1): 173-180. |
PENG T R, LIU H P, LIU Y, et al. Target weight calculation method based on fuzzy analytic hierarchy process and image contrast damage assessment method[J]. Acta Armamentarii, 2021, 42(S1): 173-180 (in Chinese). | |
22 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 658-666. |
23 | 娄文忠, 苏子龙, 汪金奎, 等. 弹载图像探测器广域协同探测算法[J]. 兵工学报, 2021, 42(11): 2388-2395. |
LOU W Z, SU Z L, WANG J K, et al. Wide-area cooperative detection algorithm of missile-borne image detector[J]. Acta Armamentarii, 2021, 42(11): 2388-2395 (in Chinese). | |
24 | HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2980-2988. |
25 | FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 4476-4484. |
/
〈 |
|
〉 |