Articles

Comparative analysis on relief grooves of high-speed and high-pressure aeroengine fuel gear pumps

  • Guoning QI ,
  • Baohai WU ,
  • Jiangfeng FU
Expand
  • 1.AECC Xi’an Engine Control Technology Co. Ltd. ,Xi’an 710077,China
    2.Key Laboratory of High-Performance Manufacturing for Aero Engine,Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi’an 710072,China
    3.Engineering Research Center of Advanced Manufacturing Technology for Aero Engine,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China
    4.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-09-28

  Revised date: 2023-10-08

  Accepted date: 2023-10-18

  Online published: 2023-11-01

Supported by

National Science and Technology Major Project(J2019-V-0016-0111);Science Center for Gas Turbine Project(P2022-B-V-003-001);Defense Industrial Technology Development Program(JCKY2022607C002);Universities Joint Key Projects of Key Research and Development Plan of Shaanxi Province(2021GXLH-01-16);Industry University Research Cooperation Project of AECC(HFZL2022CXY013)

Abstract

The relief groove is the most effective measure to alleviate oil trapping of gear pumps; therefore, its design directly affects the working efficiency and service life of the gear pump. This paper presents a performance analysis method for relief grooves based on computational fluid dynamics. A comparative study was conducted to evaluate the performance of different structural forms of relief grooves, focusing on technical indicators such as trapped oil pressure, gas volume fraction, outlet flow rate, and the flow rate non-uniformity coefficient. The results show that the relief groove F, with a flow non-uniformity of only 5.25% and a trapped oil pressure peak of 18 MPa, outperforms the rectangular, circular, and unloading slot E in terms of overall performance, exhibiting advantages of low trapped oil pressure, high volumetric efficiency, and high flow quality. These characteristics make it well-suited for the design of high-speed and high-pressure fuel gear pumps. In addition, increasing the size of the relief groove and positioning it towards the low-pressure chamber can reduce cavitation, oil entrapment, and flow pulsation. Designing the new unloading slot F with these factors in mind can improve its overall performance.

Cite this article

Guoning QI , Baohai WU , Jiangfeng FU . Comparative analysis on relief grooves of high-speed and high-pressure aeroengine fuel gear pumps[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529666 -529666 . DOI: 10.7527/S1000-6893.2023.29666

References

1 刘尚勤. 离心泵用作航空发动机主燃油泵研究[J]. 航空发动机200632(2): 43-45.
  LIU S Q. Investigation of centrifugal pump used as aeroengine main fuel pump[J]. Aeroengine200632(2): 43-45 (in Chinese).
2 刘尚勤, 王磊. 航空发动机的一种新型主燃油泵设计[J]. 航空发动机200329(2): 5-7.
  LIU S Q, WANG L. Design of a new main fuel pump for aeroengine[J]. Aeroengine200329(2): 5-7 (in Chinese).
3 唐庆, 单金光, 周龙, 等. 航空燃油齿轮泵流动机理的数值模拟研究[J]. 机电工程202138(9): 1185-1190.
  TANG Q, SHAN J G, ZHOU L, et al. Numerical simulation of the flow mechanism for aviation fuel gear pump[J]. Journal of Mechanical & Electrical Engineering202138(9): 1185-1190 (in Chinese).
4 文昌明, 李玉龙. 齿轮泵高速困油研究及卸荷槽创新[J]. 机械传动201943(3): 149-151, 165.
  WEN C M, LI Y L. Higher-speed trapped-oil pressure research and relief-groove invention for gear pump[J]. Journal of Mechanical Transmission201943(3): 149-151, 165 (in Chinese).
5 李玉龙. 齿轮泵困油及困油模型的研究进展[J]. 成都大学学报(自然科学版)201130(2): 171-177.
  LI Y L. Summary of research and development of trapped-oil phenomenon and trapped-oil model[J]. Journal of Chengdu University (Natural Science Edition)201130(2): 171-177 (in Chinese).
6 李玉龙, 孙付春. 齿轮泵困油的分析模型及侧隙计算[J]. 排灌机械工程学报201129(2): 118-122.
  LI Y L, SUN F C. Analysis model on trapped oil and backlash calculation in external gear pump[J]. Journal of Drainage and Irrigation Machinery Engineering201129(2): 118-122 (in Chinese).
7 侯刚. 外啮合齿轮泵卸荷槽的设计[J]. 流体传动与控制2004(6): 31-33.
  HOU G. The design of compensating groove in external gear pump[J]. Fluid Power Transmission and Control2004(6): 31-33 (in Chinese).
8 王建, 吴炳胜, 马戎, 等. 齿轮泵卸荷槽设计的新方法[J]. 机械传动201337(12): 73-76.
  WANG J, WU B S, MA R, et al. New method of gear pump unloading groove design[J]. Journal of Mechanical Transmission201337(12): 73-76 (in Chinese).
9 魏列江, 李涛, 卢利锋, 等. 梯形卸荷槽对外啮合齿轮泵困油压力与流量脉动影响的研究[J]. 液压与气动202145(3): 62-69.
  WEI L J, LI T, LU L F, et al. Influence of trapped oil pressure and flow pulsation in external gear pump with trapezoidal relief groove[J]. Chinese Hydraulics & Pneumatics202145(3): 62-69 (in Chinese).
10 刘兆领, 胡益菲, 崔路, 等. 齿轮泵卸荷槽设计及其内流场特性仿真[J]. 液压与气动2020(9): 100-107.
  LIU Z L, HU Y F, CUI L, et al. Design and inner flow simulation for a gear pump with relief groove[J]. Chinese Hydraulics & Pneumatics2020(9): 100-107 (in Chinese).
11 孙付春, 李玉龙, 文昌明, 等. 齿轮泵侧隙卸荷的界定标准与验证[J]. 农业工程学报201733(20): 61-66.
  SUN F C, LI Y L, WEN C M, et al. Demarcated standard and verification of backlash relief in external gear pumps[J]. Transactions of the Chinese Society of Agricultural Engineering201733(20): 61-66 (in Chinese).
12 李玉龙. 齿轮泵最大困油压力解析式的建立与验证[J]. 农业工程学报201329(11): 71-77.
  LI Y L. Establishment and verification of analytic formula for maximum trapped-oil pressure in external gear pump[J]. Transactions of the Chinese Society of Agricultural Engineering201329(11): 71-77 (in Chinese).
13 朱玉丽, 喻长发. 基于CFD的齿轮泵流场解析[J]. 机床与液压201644(5): 171-174.
  ZHU Y L, YU C F. Flow field analysis of external gear pump based on CFD[J]. Machine Tool & Hydraulics201644(5): 171-174 (in Chinese).
14 杨国来, 王文宇, 白京浩, 等. 不同卸荷槽影响下外啮合齿轮泵空化特性[J]. 制造技术与机床2020(9): 106-111.
  YANG G L, WANG W Y, BAI J H, et al. Cavitation characteristics of external gear pump under the influence of different relief grooves[J]. Manufacturing Technology & Machine Tool2020(9): 106-111 (in Chinese).
15 EATON M, EDGE K A, KEOGH P S. Modelling and simulation of pressures within the meshing teeth of gear pumps[C]∥Proceedings of the International Conference on Recent Advances in Aerospace Actuation Systems and Components. Lyon: Institut National Des Sciences Appliquées, Département Génie industriel, 2001.
16 EATON M, KEOGH P S, EDGE K A. The modelling, prediction, and experimental evaluation of gear pump meshing pressures with particular reference to aero-engine fuel pumps[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering2006220(5): 365-379.
17 YATES M K. The calculation of gear pump porting areas by mathematical means[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2015229(1): 180-188.
18 李镕熙, 周龙, 周振华, 等. 基于新型卸荷槽的齿轮泵内部流场及空化特性分析[J]. 机电工程202239(8): 1017-1023.
  LI R X, ZHOU L, ZHOU Z H, et al. Numerical analysis of internal flow field and cavitation of gear pump based on new relief groove[J]. Journal of Mechanical & Electrical Engineering202239(8): 1017-1023 (in Chinese).
19 符江锋,赵志杰,刘显为,等.基于运动法的航空发动机高速燃油齿轮泵卸荷槽设计与验证[J/OL].推进技术, (2023-07-04)[2023-09-09]. .
  FU J F, ZHAO Z J, LIU X W, et al. Design and verification of relief groove for aero-engine high-speed fuel gear pump based on motion method[J/OL]. Journal of Propulsion Technology, (2023-07-04)[2023-09-09]. .
Outlines

/