Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft

Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft

  • Junfu LI ,
  • Qing CHEN ,
  • Wei WANG ,
  • Zhonghua HAN ,
  • Yuting TAN ,
  • Yulin DING ,
  • Lu XIE ,
  • Jianling QIAO ,
  • Ke SONG ,
  • Junqiang AI
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.AVIC The First Aircraft Institute,Xi’an 710089,China
    3.Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern Polytechnical University,Xi’an 710072,China
    4.Institute of Aerodynamic and Multidisciplinary Design Optimization,School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: hanzh@nwpu.edu.cn

Received date: 2023-09-19

  Revised date: 2023-10-07

  Accepted date: 2023-10-24

  Online published: 2023-11-01

Supported by

National Level Project

Abstract

The design of low sonic boom high efficiency aerodynamic layout is one of the most important key technologies for supersonic civil aircraft. Based on the inverse design method of sonic boom minimization theory, this paper proposes an advanced supersonic civil aircraft low sonic boom aerodynamic layout using the aft-body design based on wave system beneficial interference and the mixed credibility anti-design method based on the parameterized near-field overpressure signal, and analyzes the effect of each step of sonic boom reduction and the whole sonic boom blanket. Then, the effects of flying altitude, Mach number and wing swept angle on the sonic boom loudness of the aerodynamic layout are studied. Finally, the effects of flying altitude and Mach number on the aerodynamic characteristics of the layout are examined using CFD numerical simulation method. The results show that the anti-design method based on the sonic boom minimization theory can reduce the ground perceived loudness in decibel by 6.54 PLdB, while the aft-body design method based on the wave system beneficial interference and the hybrid reliability inverse design method of parameterized near-field overpressure signal can further reduce it by 0.97 PLdB and 4.04 PLdB, respectively. Reasonable match of the flying height and Mach number can effectively reduce the ground perceived loudness in decibel. Reasonable selection of the flying height and cruise Mach number can effectively improve cruise efficiency. This study has certain engineering value for both aerodynamic layout design and aircraft conceptual design of supersonic civil aircraft.

Cite this article

Junfu LI , Qing CHEN , Wei WANG , Zhonghua HAN , Yuting TAN , Yulin DING , Lu XIE , Jianling QIAO , Ke SONG , Junqiang AI . Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629613 -629613 . DOI: 10.7527/S1000-6893.2023.29613

References

1 CANDEL S. Concorde and the future of supersonic transport[J]. Journal of Propulsion and Power200420(1): 59-68.
2 PEIREN G. Tu-144 supersonic transport[J]. Civil Aircraft Design and Research2015(3): 99-102.
3 BAIZE, DANIEL G. The 1995 NASA High-Speed Research Program Sonic Boom Workshop: NASA-CP-3335-Vol-1[R]. Washington, D.C.: NASA, 1996.
4 BOEING COMMERCIAL AIRPLANES. High-speed civil transport study. Summary: NASA-CR-4233[R]. Washington, D.C.: NASA, 1989.
5 DOUGLAS AIRCRAFT COMPANY. Study of high-speed civil transports: NASA CR-1989-4235[R]. Washington, D.C.: NASA, 1989.
6 GREEN P K, PACULL M, REIMERS H D. European 2nd Generation Supersonic Commercial Transport Aircraft[C]∥Proceedings of the 20th International Congress of the Aeronautical Sciences. Sorrento: ICAS, 1996:ICAS-96-4.4.1.
7 YAMAKAMI K, NAKAHASHI K, OBAYASHI S. Aerodynamic design and CFD evaluation of a high-speed commercial transport: NAL SP-34[R]. Tokyo: National Aerospace Laboratory, 1997.
8 PLOTKIN K, MAGLIERI D. Sonic boom research: history and future: AIAA-2003-3575[R]. Reston: AIAA, 2003.
9 SAKATA K. Supersonic Experimental Airplane (NEXST) for Next Generation SST Technology-Development and flight test plan for the Unmanned Scaled Supersonic Glider: AIAA-2002-0527[R]. Reston: AIAA, 2002.
10 MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35 (N+3): AIAA-2010-5114[R]. Reston: AIAA, 2010.
11 LIEBHARDT B, LüTJENS K, UENO A, et al. JAXA’s S4 supersonic low-boom airliner-A collaborative study on aircraft design, sonic boom simulation, and market prospects[C]∥Proceedings of the AIAA AVIATION 2020 FORUM. Reston: AIAA, 2020: AIAA2020-2731.
12 buonanno Michael. Conceptual design of a quiet supersonic technology airliner[R/OL]. [2023-10-31]. .
13 RICHWINE D, BRANDON J. Quiet SuperSonic technology (QueSST) aircraft preliminary design status and low-boom flight demonstration (LBFD) project update[R]. Reston: AIAA, 2018
14 Nemec M, Aftosmis M, Spurlock W. Minimizing sonic boom through simulation-based design: the X-59 airplane[R]. Washington, D.C.: NASA, 2020.
15 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022: 7-8.
  HAN Z H, QIAN Z S, QIAO J L. Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022: 7-8. (in Chinese).
16 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报201937(4): 620-635.
  HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica201937(4): 620-635 (in Chinese).
17 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报201937(4): 601-619, 600.
  QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica201937(4): 601-619, 600 (in Chinese).
18 Robinson L D. A Numerical Model for Sonic Boom Propagation through an Inhomogeneous, Windy Atmoshpere: NASA CP-1372 [R]. Washington D.C.: NASA, 1992.
19 WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics19525(3): 301-348.
20 WHITHAM G B. The behaviour of supersonic flow past a body of revolution, far from the axis[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences1950201(1064): 89-109.
21 WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly19589(2): 164-194.
22 Ding Y L, Han Z H, Qiao J L, et al. Fast method and an integrated code for sonic boom prediction of supersonic commercial aircraft[C]∥32nd Congress of the International Council of the Aeronautical Sciences. Shanghai: International Council of the Aeronautical Sciences, 2021:1-12.
23 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报201937(4): 663-674.
  QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica201937(4): 663-674 (in Chinese).
24 STEVENS S S. Perceived level of noise by mark Ⅶ and decibels (E)[J]. The Journal of the Acoustical Society of America197251(2B): 575-601.
25 JONES L B. Lower bounds for sonic Bangs[J]. The Journal of the Royal Aeronautical Society196165(606): 433-436.
26 JONES L B. Lower bounds for sonic Bangs in the far field[J]. Aeronautical Quarterly196718(1): 1-21.
27 JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly197021(1): 1-17.
28 SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature1969221(5181): 651-653.
29 SEEBASS R, GEORGE A R. Sonic-boom minimization[J]. The Journal of the Acoustical Society of America197251(2C): 686-694.
30 GEORGE A R. Lower bounds for sonic booms in the midfield[J]. AIAA Journal19697(8): 1542-1545.
31 GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal19719(10): 2091-2093.
32 DARDEN C. Sonic-boom minimization with nose-bluntness relaxation: NASA TP-1348[R]. Washington D.C.: NASA, 1979
33 DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal202361(7): 2840-2853.
34 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报202344(2): 20-46.
  DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica202344(2): 20-46 (in Chinese).
35 HAN Z H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥Proceedings of the 30th Congress of the International Council of the Aeronautical Sciences. Daejeon: ICAS, 2016: ICAS 2016-0281.
36 HAN Z H, G?RTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal201250(9): 1885-1896.
37 HAN Z H, G?RTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology201325(1): 177-189.
38 HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal201755(12): 4330-4346.
39 PARK M. 1st AIAA sonic boom prediction workshop[EB/OL]. (2017-12-13)[2017-12-13]. .
40 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报202243(12): 025649.
  ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica202243(12): 025649 (in Chinese).
Outlines

/