ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Event-triggered-based orbit maintenance control for spacecraft subsatellite point control
Received date: 2023-08-05
Revised date: 2023-08-29
Accepted date: 2023-10-31
Online published: 2023-11-01
Supported by
National Natural Science Foundation of China(62188101)
A fuzzy adaptive control method based on event-triggered mechanism is proposed for high precision autonomous orbit maintenance of ultra-low orbit spacecraft with limited communication and atmosphere drag perturbation. Firstly, a spacecraft orbit dynamics model is established based on the relative average orbital elements. The fuzzy adaptive control method is used to estimate the nonlinear function caused by atmosphere drag. Then, an event-triggered mechanism placed on the controller cellular satellite is proposed to reduce the communication burden and computation. Meanwhile, constant control thrust over a certain period of time can be ensured which can extend the lifetime of electric thrust cellular satellite. An event-triggered-based fuzzy adaptive autonomous orbit maintenance controller is designed for maintaining subsatellite point trajectory. Finally, the effectiveness of the proposed control algorithm is verified through simulation results.
Kai NING , Baolin WU . Event-triggered-based orbit maintenance control for spacecraft subsatellite point control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 329412 -329412 . DOI: 10.7527/S1000-6893.2023.29412
1 | 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程, 2016, 25(1): 10-18. |
HU L Y, ZHANG L H, CHENG X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering, 2016, 25(1): 10-18 (in Chinese). | |
2 | 易彬, 秦显平, 谷德峰, 等. 多机构比对融合的分布式InSAR编队星间基线确定[J]. 航空学报, 2018, 39(1): 321187. |
YI B, QIN X P, GU D F, et al. Baseline determination for distributed InSAR satellite system using inter-agency comparison and fusion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 321187 (in Chinese). | |
3 | K?NIGSMANN H J, COLLINS J T, DAWSON S, et al. Autonomous orbit maintenance system[J]. Acta Astronautica, 1996, 39(9/10/11/12): 977-985. |
4 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
5 | 吉莉, 刘昆, 项军华. 内编队重力场测量卫星全推力姿轨一体化控制研究[J]. 中国科学: 技术科学, 2012, 42(2): 220-229. |
JI L, LIU K, XIANG J H. Research on integrated control of full thrust attitude and orbit of internal formation gravity field measurement satellites[J]. Scientia Sinica (Technologica), 2012, 42(2): 220-229 (in Chinese). | |
6 | KOZUBSKII K N, MURASHKO V M, RYLOV Y P, et al. Stationary plasma thrusters operate in space[J]. Plasma Physics Reports, 2003, 29(3): 251-266. |
7 | ANZEL B. Stationkeeping the Hughes HS 702 satellite with a xenon ion propulsion system[C]∥Proceedings of the 49th International Astronautical Congress. Melbourne: IAF, 1998: 105-110. |
8 | GARULLI A, GIANNITRAPANI A, LEOMANNI M, et al. Autonomous low-earth-orbit station-keeping with electric propulsion[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1683-1693. |
9 | 莫凡, 丁建钊, 任放, 等. 一种低轨遥感卫星自主轨道控制方法[J]. 航天器工程, 2020, 29(3): 12-17. |
MO F, DING J Z, REN F, et al. An autonomous orbit control method of low orbit remote sensing satellite[J]. Spacecraft Engineering, 2020, 29(3): 12-17 (in Chinese). | |
10 | LEOMANNI M, GARULLI A, GIANNITRAPANI A, et al. An adaptive groundtrack maintenance scheme for spacecraft with electric propulsion[J]. Acta Astronautica, 2020, 167: 460-466. |
11 | 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报, 2016, 37(1): 1-10. |
HUANG P F, CHANG H T, LU Z Y, et al. Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics, 2016, 37(1): 1-10 (in Chinese). | |
12 | WEISE J, BRIE? K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]∥Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Paris: ESA, 2012. |
13 | CHANG H T, HUANG P F, ZHANG Y Z, et al. Distributed control allocation for spacecraft attitude takeover control via cellular space robot[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2499-2506. |
14 | TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. |
15 | LUNZE J, LEHMANN D. A state-feedback approach to event-based control[J]. Automatica, 2010, 46(1): 211-215. |
16 | 沈斌斌, 王之伟, 池庆国, 等. 事件驱动控制系统下的新型触发机制[J]. 控制工程, 2022, 29(8): 1429-1436. |
SHEN B B, WANG Z W, CHI Q G, et al. New triggering mechanism for event-driven control system[J]. Control Engineering of China, 2022, 29(8): 1429-1436 (in Chinese). | |
17 | 林子杰, 陆国平, 吕旺, 等. 基于事件驱动的航天器姿态自适应跟踪控制[J]. 航天控制, 2021, 39(1): 32-39. |
LIN Z J, LU G P, LV W, et al. Adaptive event-triggered control for spacecraft attitude tracking[J]. Aerospace Control, 2021, 39(1): 32-39 (in Chinese). | |
18 | WANG X L, LIU J P, LAM H K, et al. Fuzzy-model-based dynamic event-triggered control in sensor-to-controller channel for nonlinear strict-feedback system via command filter[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(8): 2761-2772. |
19 | 王涛, 康宇, 李鹏飞. 基于自适应事件触发分布式模型预测控制的多智能体系统跟踪一致性[J]. 中国科学: 技术科学, 2023, 53(11): 1885-1894. |
WANG T, KANG Y, LI P F. Adaptive event-triggered distributed model predictive control for tracking consensus of multiagent systems[J]. Scientia Sinica (Technologica), 2023, 53(11): 1885-1894 (in Chinese). | |
20 | WU B L, SHEN Q, CAO X B. Event-triggered attitude control of spacecraft[J]. Advances in Space Research, 2018, 61(3): 927-934. |
21 | LIU Y, JIANG B X, LU J Q, et al. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3290-3299. |
22 | WANG C L, GUO L, WEN C Y, et al. Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2241-2250. |
23 | LIU W X, GENG Y H, WU B L, et al. Neural-network-based adaptive event-triggered control for spacecraft attitude tracking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4015-4024. |
24 | XIE H Y, WU B L, BERNELLI-ZAZZERA F. High minimum inter-execution time sigmoid event-triggered control for spacecraft attitude tracking with actuator saturation[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(2): 1349-1363. |
25 | 马广富, 董宏洋, 胡庆雷. 考虑避障的航天器编队轨道容错控制律设计[J]. 航空学报, 2017, 38(10): 321129. |
MA G F, DONG H Y, HU Q L. Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 321129 (in Chinese). | |
26 | DE FLORIO S, D’AMICO S, RADICE G. Virtual formation method for precise autonomous absolute orbit control[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 425-438. |
27 | CHEN L H, LIU M, HUANG X L, et al. Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1311-1323. |
/
〈 |
|
〉 |