Electronics and Electrical Engineering and Control

Event-triggered-based orbit maintenance control for spacecraft subsatellite point control

  • Kai NING ,
  • Baolin WU
Expand
  • School of Astronautics,Harbin Institute of Technology,Harbin 150000,China

Received date: 2023-08-05

  Revised date: 2023-08-29

  Accepted date: 2023-10-31

  Online published: 2023-11-01

Supported by

National Natural Science Foundation of China(62188101)

Abstract

A fuzzy adaptive control method based on event-triggered mechanism is proposed for high precision autonomous orbit maintenance of ultra-low orbit spacecraft with limited communication and atmosphere drag perturbation. Firstly, a spacecraft orbit dynamics model is established based on the relative average orbital elements. The fuzzy adaptive control method is used to estimate the nonlinear function caused by atmosphere drag. Then, an event-triggered mechanism placed on the controller cellular satellite is proposed to reduce the communication burden and computation. Meanwhile, constant control thrust over a certain period of time can be ensured which can extend the lifetime of electric thrust cellular satellite. An event-triggered-based fuzzy adaptive autonomous orbit maintenance controller is designed for maintaining subsatellite point trajectory. Finally, the effectiveness of the proposed control algorithm is verified through simulation results.

Cite this article

Kai NING , Baolin WU . Event-triggered-based orbit maintenance control for spacecraft subsatellite point control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 329412 -329412 . DOI: 10.7527/S1000-6893.2023.29412

References

1 胡凌云, 张立华, 程晓丽, 等. 超低轨航天器气动设计与计算方法探讨[J]. 航天器工程201625(1): 10-18.
  HU L Y, ZHANG L H, CHENG X L, et al. Method of aerodynamic design and calculation for ultra-LEO spacecraft[J]. Spacecraft Engineering201625(1): 10-18 (in Chinese).
2 易彬, 秦显平, 谷德峰, 等. 多机构比对融合的分布式InSAR编队星间基线确定[J]. 航空学报201839(1): 321187.
  YI B, QIN X P, GU D F, et al. Baseline determination for distributed InSAR satellite system using inter-agency comparison and fusion[J]. Acta Aeronautica et Astronautica Sinica201839(1): 321187 (in Chinese).
3 K?NIGSMANN H J, COLLINS J T, DAWSON S, et al. Autonomous orbit maintenance system[J]. Acta Astronautica199639(9/10/11/12): 977-985.
4 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
5 吉莉, 刘昆, 项军华. 内编队重力场测量卫星全推力姿轨一体化控制研究[J]. 中国科学: 技术科学201242(2): 220-229.
  JI L, LIU K, XIANG J H. Research on integrated control of full thrust attitude and orbit of internal formation gravity field measurement satellites[J]. Scientia Sinica (Technologica)201242(2): 220-229 (in Chinese).
6 KOZUBSKII K N, MURASHKO V M, RYLOV Y P, et al. Stationary plasma thrusters operate in space[J]. Plasma Physics Reports200329(3): 251-266.
7 ANZEL B. Stationkeeping the Hughes HS 702 satellite with a xenon ion propulsion system[C]∥Proceedings of the 49th International Astronautical Congress. Melbourne: IAF, 1998: 105-110.
8 GARULLI A, GIANNITRAPANI A, LEOMANNI M, et al. Autonomous low-earth-orbit station-keeping with electric propulsion[J]. Journal of Guidance, Control, and Dynamics201134(6): 1683-1693.
9 莫凡, 丁建钊, 任放, 等. 一种低轨遥感卫星自主轨道控制方法[J]. 航天器工程202029(3): 12-17.
  MO F, DING J Z, REN F, et al. An autonomous orbit control method of low orbit remote sensing satellite[J]. Spacecraft Engineering202029(3): 12-17 (in Chinese).
10 LEOMANNI M, GARULLI A, GIANNITRAPANI A, et al. An adaptive groundtrack maintenance scheme for spacecraft with electric propulsion[J]. Acta Astronautica2020167: 460-466.
11 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报201637(1): 1-10.
  HUANG P F, CHANG H T, LU Z Y, et al. Key techniques of on-orbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics201637(1): 1-10 (in Chinese).
12 WEISE J, BRIE? K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]∥Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Paris: ESA, 2012.
13 CHANG H T, HUANG P F, ZHANG Y Z, et al. Distributed control allocation for spacecraft attitude takeover control via cellular space robot[J]. Journal of Guidance, Control, and Dynamics201841(11): 2499-2506.
14 TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control200752(9): 1680-1685.
15 LUNZE J, LEHMANN D. A state-feedback approach to event-based control[J]. Automatica201046(1): 211-215.
16 沈斌斌, 王之伟, 池庆国, 等. 事件驱动控制系统下的新型触发机制[J]. 控制工程202229(8): 1429-1436.
  SHEN B B, WANG Z W, CHI Q G, et al. New triggering mechanism for event-driven control system[J]. Control Engineering of China202229(8): 1429-1436 (in Chinese).
17 林子杰, 陆国平, 吕旺, 等. 基于事件驱动的航天器姿态自适应跟踪控制[J]. 航天控制202139(1): 32-39.
  LIN Z J, LU G P, LV W, et al. Adaptive event-triggered control for spacecraft attitude tracking[J]. Aerospace Control202139(1): 32-39 (in Chinese).
18 WANG X L, LIU J P, LAM H K, et al. Fuzzy-model-based dynamic event-triggered control in sensor-to-controller channel for nonlinear strict-feedback system via command filter[J]. IEEE Transactions on Fuzzy Systems202331(8): 2761-2772.
19 王涛, 康宇, 李鹏飞. 基于自适应事件触发分布式模型预测控制的多智能体系统跟踪一致性[J]. 中国科学: 技术科学202353(11): 1885-1894.
  WANG T, KANG Y, LI P F. Adaptive event-triggered distributed model predictive control for tracking consensus of multiagent systems[J]. Scientia Sinica (Technologica)202353(11): 1885-1894 (in Chinese).
20 WU B L, SHEN Q, CAO X B. Event-triggered attitude control of spacecraft[J]. Advances in Space Research201861(3): 927-934.
21 LIU Y, JIANG B X, LU J Q, et al. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202050(9): 3290-3299.
22 WANG C L, GUO L, WEN C Y, et al. Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults[J]. IEEE Transactions on Industrial Electronics202067(3): 2241-2250.
23 LIU W X, GENG Y H, WU B L, et al. Neural-network-based adaptive event-triggered control for spacecraft attitude tracking[J]. IEEE Transactions on Neural Networks and Learning Systems202031(10): 4015-4024.
24 XIE H Y, WU B L, BERNELLI-ZAZZERA F. High minimum inter-execution time sigmoid event-triggered control for spacecraft attitude tracking with actuator saturation[J]. IEEE Transactions on Automation Science and Engineering202320(2): 1349-1363.
25 马广富, 董宏洋, 胡庆雷. 考虑避障的航天器编队轨道容错控制律设计[J]. 航空学报201738(10): 321129.
  MA G F, DONG H Y, HU Q L. Fault-tolerant translational control for spacecraft formation flying with collision avoidance requirement[J]. Acta Aeronautica et Astronautica Sinica201738(10): 321129 (in Chinese).
26 DE FLORIO S, D’AMICO S, RADICE G. Virtual formation method for precise autonomous absolute orbit control[J]. Journal of Guidance, Control, and Dynamics201437(2): 425-438.
27 CHEN L H, LIU M, HUANG X L, et al. Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems201826(3): 1311-1323.
Outlines

/