Reviews

Research progress of smart thermal barrier coatings based on phosphorescence temperature measurement technology

  • Yong SHANG ,
  • Huijun YANG ,
  • Yang FENG ,
  • Changzhen ZHANG ,
  • Yanling PEI ,
  • Shengkai GONG
Expand
  • Research Institute for Frontier Science,Beihang University,Beijing 100191,China

Received date: 2023-07-19

  Revised date: 2023-08-14

  Accepted date: 2023-10-20

  Online published: 2023-11-01

Supported by

Beijing Municipal Natural Science Foundation(22B20116);Zhejiang Province Natural Science Foundation(LZ23E020005);Science Center for Gas Turbine Project(P2022-B-IV-009-001);National Science and Technology Major Project(J2019-VII-0008-0148);Industry-University-Research Cooperation Project of Aero Engine Corporation of China(HFZL2021CXY016)

Abstract

The lack of surface temperature distribution data of turbine blade coating is a key problem in the current aero engine material design, which seriously limits the performance improvement of advanced aircraft. Thermal barrier coating (for turbine blades) doped a small quantity of rare earth elements has the potential to evolve into a novel intelligent material known as Smart Thermal Barrier Coating (STBC). This currently represents the most promising method for determining the temperature distribution of coated blades during engine service. In this paper, the principle and method of on-line (thermal barrier sensor coating)/off-line (thermal history coating) temperature measurement of STBC are introduced in detail. The research progress of surface temperature distribution and interface temperature gradient detection of aero-engine hot end components based on different preparation processes of STBCis also introduced. Based on the temperature measurement requirements of different aero-engine hot end components, the practical industrial applications of STBC at home and abroad are summarized. Based on the effect of rare earth element doping on the intrinsic properties of thermal barrier coatings, the feasibility of practical application of thermal barrier coatings is demonstrated. Finally, the problems that need to be solved in the application of this temperature measurement technology to the thermometry of aero engine hot end components are pointed out, and its development direction is prospected.

Cite this article

Yong SHANG , Huijun YANG , Yang FENG , Changzhen ZHANG , Yanling PEI , Shengkai GONG . Research progress of smart thermal barrier coatings based on phosphorescence temperature measurement technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(12) : 29341 -029341 . DOI: 10.7527/S1000-6893.2023.29341

References

1 胡娜, 赵伟, 晋小超, 等. 航空发动机涡轮叶片接触式测温技术应用进展[J]. 航空工程进展202314(1): 1-12.
  HU N, ZHAO W, JIN X C, et al. Advances in application of contact temperature measurement technology for aero-engineblade[J]. Advances in Aeronautical Science and Engineering202314(1): 1-12 (in Chinese).
2 DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews201358(6): 315-348.
3 周益春, 杨丽, 刘志远, 等. 涡轮叶片热障涂层隔热效果的研究进展[J]. 中国材料进展202039(10): 707-722, 738.
  ZHOU Y C, YANG L, LIU Z Y, et al. Research progress on insulation performance of thermal barrier coatings on turbine blade[J]. Materials China202039(10): 707-722, 738 (in Chinese).
4 姚艳玲, 代军, 黄春峰. 现代航空发动机温度测试技术发展综述[J]. 航空制造技术201558(12): 103-107.
  YAO Y L, DAI J, HUANG C F. Development for temperature measurement technology in modern aeroengine[J]. Aeronautical Manufacturing Technology201558(12): 103-107 (in Chinese).
5 TOUGAS I M, AMANI M, GREGORY O J. Metallic and ceramic thin film thermocouples for gas turbine engines[J]. Sensors201313(11): 15324-15347.
6 李杨, 李志敏, 熊兵,等. 航空发动机涡轮叶片温度测量技术现状与发展[C]∥ 第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集. 贵阳: 中国科协, 2013: 646-650.
  LI Y, LI Z M, XIONG B, et al. Present situation and development of temperature measurement technology of aero-engine turbine blade[C]∥ The 13th Branch of the 15th Annual Conference of Chinese Association for Science and Technology: Symposium on Aeroengine Design, Manufacture and Application Technology. Guiyang:Chinese Association for Science and Technology,2013: 646?650 (in Chinese).
7 黄春峰, 蒋明夫, 毛茂华. 国外航空发动机薄膜热电偶技术发展研究[J]. 航空发动机201137(6): 53-57.
  HUANG C F, JIANG M F, MAO M H. Development on thin-film thermocouples technology for foreign aeroengine[J]. Aeroengine201137(6): 53-57 (in Chinese).
8 熊兵, 侯敏杰, 陈洪敏, 等. 辐射测温技术在涡轮叶片温度场中的应用[J]. 燃气涡轮试验与研究200821(3): 50-54.
  XIONG B, HOU M J, CHEN H M, et al. Application of infrared thermometer in turbine blade temperature field[J]. Gas Turbine Experiment and Research200821(3): 50-54 (in Chinese).
9 DUAN F L, HU M K, LIN Y Z, et al. A new high-temperature sensing device by making use of TBC thermistor for intelligent propulsion systems[C]∥ Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018.
10 刘丽华, 王军, 新力, 等. 光纤温度传感器的应用及发展[J]. 仪器仪表学报200324(5): 547-550.
  LIU L H, WANG J, XIN L, et al. Applied study and development of fiber-optic temperature sensor[J]. Chinese Journal of Scientific Instrument200324(5): 547-550 (in Chinese).
11 韩国庆, 刘显明, 雷小华, 等. 光纤传感技术在航空发动机温度测试中的应用[J]. 仪器仪表学报202243(1): 145-164.
  HAN G Q, LIU X M, LEI X H, et al. Application of optical fiber sensing in aero-engine temperature test[J]. Chinese Journal of Scientific Instrument202243(1): 145-164 (in Chinese).
12 RABHIOU A, FEISTJ, KEMPFA, et al. Concept for a phosphorescent thermal history sensor[C]∥ Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 3: Controls, Diagnostics and Instrumentation; Cycle Innovations. New York: ASME, 2010.
13 王超, 苟学科, 段英, 等. 航空发动机涡轮叶片温度测量综述[J]. 红外与毫米波学报201837(4): 501-512.
  WANG C, GOU X K, DUAN Y, et al. A review of aero-engine turbine blade temperature measurement[J]. Journal of Infrared and Millimeter Waves201837(4): 501-512 (in Chinese).
14 周峰, 欧阳永杰, 王龙南, 等. 航空发动机晶体测温技术应用研究[J]. 科学技术创新2022(17): 165-168.
  ZHOU F, OUYANG Y J, WANG L N, et al. Application research on crystal temperature measurement technology of aero-engine[J]. Scientific and Technological Innovation2022(17): 165-168 (in Chinese).
15 ALLISON S W, GILLIES G T. Remote thermometry with thermographic phosphors: Instrumentation and applications[J]. Review of Scientific Instruments199768(7): 2615-2650.
16 CHOY K L, HEYES A L, FEIST J P. Thermal barrier coating with thermoluminescent indicator material embedded therein: US8173266[P]. 2012?05?08.
17 FEIST J P, NICHOLLS J R, HEYES A L. Determining thermal history of components: US20110069735[P]. 2011-03-24.
18 CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annual Review of Materials Research200939: 325-359.
19 杨丽霞, 付雅婷, 赵晓峰, 等. 热障涂层在线/离线磷光温度测量技术研究进展[J]. 航空制造技术202265(3): 71-81.
  YANG L X, FU Y T, ZHAO X F, et al. Research progress of on-line/off-line phosphor thermometry technology for thermal barrier coatings[J]. Aeronautical Manufacturing Technology202265(3): 71-81 (in Chinese).
20 HEYES A L, RABHIOU A, FEIST J P, et al. Thermal history sensing with thermographic phosphors[C]∥ AIP Conference Proceedings. New York: AIP, 2013: 891-896.
21 ZHOU Y H, LIN J, WANG S B, et al. Preparation of Y3Al5O12:Eu phosphors by citric?gel method and their luminescent properties[J]. Optical Materials200220(1): 13-20.
22 Yá?EZ-GONZáLEZ á, VAN WACHEM B, SKINNER S, et al. On the kinetics of thermal oxidation of the thermographic phosphor BaMgAL10O17:Eu[J]. Materials & Design2016108: 145-150.
23 GONZáLEZ á Y, SKINNER S, BEYRAU F, et al. Reusable thermal history sensing via oxidation of a divalent rare earth ion-based phosphor synthesized by the sol?gel process[J]. Heat Transfer Engineering201536(14-15): 1275-1281.
24 ARAGUAS RODRIGUEZ S, PERAL JIMéNEZ D, PILGRIM C C, et al. Feasibility of the use of thermal history paints for long term exposure of low temperature life critical components[C]∥ ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 4: Controls, Diagnostics, and Instrumentation. New York: ASME, 2023.
25 WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics200394(8): 4743-4756.
26 KHALID A H, KONTIS K. Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications[J]. Sensors20088(9): 5673-5744.
27 GOSS L P, SMITH A A, POST M E. Surface thermometry by laser-induced fluorescence[J]. Review of Scientific Instruments198960(12): 3702-3706.
28 FEIST J P, HEYES A L. The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications[J]. Measurement Science and Technology200011(7): 942-947.
29 WILLIAMS A T R, WINFIELD S A, MILLER J N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer[J]. Analyst1983108(1290):1067?1071.
30 ALLISON S W, GOEDEKE S M, CATES M R, et al. Fluorescence rise time measurements for high temperature fluorescence-based thermometry[M]. Washington, D.C.: Department of Energy, 2005.
31 CAI T, PARK Y, MOHAMMADSHAHI S, et al. Rise time-based phosphor thermometry using Mg4FGeO6:Mn4+ [J]. Measurement Science and Technology202132(1): 015201.
32 OMRANE A, OSSLER F, ALDéN M. Two-dimensional surface temperature measurements of burning materials[J]. Proceedings of the Combustion Institute200229(2): 2653-2659.
33 ALDéN M, OMRANE A, RICHTER M, et al. Thermographic phosphors for thermometry: A survey of combustion applications[J]. Progress in Energy and Combustion Science201137(4): 422-461.
34 王鹏程, 赵运才, 刘明, 等. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报202135(9): 9069-9076.
  WANG P C, ZHAO Y C, LIU M, et al. Research status and trend of YSZ thermal barrier coatings doped with rare earth oxides[J]. Materials Reports202135(9): 9069-9076 (in Chinese).
35 LASHMI P G, MAJITHIA S, SHWETHA V, et al. Improved hot corrosion resistance of plasma sprayed YSZ/Gd2Zr2O7 thermal barrier coating over single layer YSZ[J]. Materials Characterization2019147: 199-206.
36 SU Y J, TRICE R W, FABER K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3?ZrO2 (YSZ) thermal-barrier coatings[J]. Oxidation of Metals200461(3): 253-271.
37 SHEN Y, CHAMBERS M D, CLARKE D R. Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ[J]. Surface and Coatings Technology2008203(5-7): 456-460.
38 CHAMBERS M D, CLARKE D R. Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials[J]. Surface and Coatings Technology2007202(4-7): 688-692.
39 SKINNER S J, FEIST J P, BROOKS I J E, et al. YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications[J]. Sensors and Actuators B: Chemical2009136(1): 52-59.
40 杨金华,董禹飞,杨瑞, 等. 航空发动机用陶瓷基复合材料研究进展[J]. 航空动力2021(5): 56-59.
  YANG J H, DONG Y F, YANGR, et al. Progress of ceramic matrix composites for aero engine[J]. Aerospace Power2021(5): 56-59 (in Chinese).
41 CHAMBERS M D, ROUSSEVE P A, CLARKE D R. Luminescence thermometry for environmental barrier coating materials[J]. Surface and Coatings Technology2008203(5-7): 461-465.
42 PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science2002296(5566): 280-284.
43 FEIST J P, HEYES A L, NICHOLLS J R. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001215(6): 333-341.
44 CLARKE D. Embedded optical sensors for thermal barrier coatings: FG26-03NT41794[R]. Washington, D.C.: Department of Energy, 2004.
45 王志平, 许婧, 刘延宽. 热障涂层荧光测温法的现状与发展研究[J]. 热加工工艺202150(22): 6-13.
  WANG Z P, XU J, LIU Y K. Research on current status and development of fluorescence thermometry for thermal barrier coatings[J]. Hot Working Technology202150(22): 6-13 (in Chinese).
46 CHEN X, MUTASIM Z, PRICE J, et al. Industrial sensor TBCs: Studies on temperature detection and durability[J]. International Journal of Applied Ceramic Technology20052(5): 414-421.
47 PILGRIM C C, HEYES A L, FEIST J P. Thermal history sensors for non-destructive temperature measurements in harsh environments[C]∥ AIP Conference Proceedings. New York: AIP Publishing, 2014: 1609-1616.
48 STENDERS D, KARADAGLI I, PFLITSCH C, et al. Sol-gel deposited thermographic phosphors as possible thermal history coatings[C]∥ IET & ISA 60th International Instrumentation Symposium. London: IET, 2014: 1-6.
49 DENG T L, YAN S R, HU J G. Effect of calcination temperature on up-conversion photoluminescence of the GdAlO3: Er3+, Yb3+ phosphor[J]. ECS Journal of Solid State Science and Technology20144(3): R48-R53.
50 COPIN E B, MASSOL X, AMIEL S, et al. Novel erbia-yttria Co-doped zirconia fluorescent thermal history sensor[J]. Smart Materials and Structures201726(1): 015001.
51 AMIEL S, COPIN E, SENTENAC T, et al. On the thermal sensitivity and resolution of a YSZ:Er3+/YSZ:Eu3+ fluorescent thermal history sensor[J]. Sensors and Actuators A: Physical2018272: 42-52.
52 ELDRIDGE J I, BENCIC T J, ALLISON S W, et al. Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors[J]. Journal of Thermal Spray Technology200413(1): 44-50.
53 YANG L X, PENG D, ZHAO C S, et al. Evaluation of the in-depth temperature sensing performance of Eu- and Dy-doped YSZ in air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology2017316: 210-218.
54 ABOU NADA F, LANTZ A, LARFELDT J, et al. Remote temperature sensing on and beneath atmospheric plasma sprayed thermal barrier coatings using thermographic phosphors[J]. Surface and Coatings Technology2016302: 359-367.
55 GENTLEMAN M M, ELDRIDGE J I, ZHU D M, et al. Non-contact sensing of TBC/BC interface temperature in a thermal gradient[J]. Surface and Coatings Technology2006201(7): 3937-3941.
56 STEENBAKKER R J L, FEIST J P, WELLMAN R G, et al. Sensor thermal barrier coatings: Remote in situ condition monitoring of EB-PVD coatings at elevated temperatures[J]. Journal of Engineering for Gas Turbines and Power2009131(4): 041301.
57 GENTLEMAN M M, CLARKE D R. Concepts for luminescence sensing of thermal barrier coatings[J]. Surface and Coatings Technology2004188-189: 93-100.
58 COPIN é, SENTENAC T, LE MAOULT Y, et al. Feasibility of luminescent multilayer sol-gel thermal barrier coating manufacturing for future applications in through-thickness temperature gradient sensing[J]. Surface and Coatings Technology2014260: 90-96.
59 刘郑红, 余亚丽, 程伟伦, 等. 电子束物理气相沉积热障涂层隔热性能的磷光寿命在线测量[J]. 上海交通大学学报202357(9): 1186-1195.
  LIU Z H, YU Y L, CHENG W L, et al. Evaluation of thermal insulation performance of EB-PVD YSZ thermal barrier coatings by phosphorescence lifetime online measurement[J]. Journal of Shanghai Jiao Tong University202357(9): 1186-1195 (in Chinese).
60 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术202243(2): 113-131.
  DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology202243(2): 113-131 (in Chinese).
61 HEYES A L, RABHIOU A, FEIST J P, et al. Phosphor based temperature indicating paints[C]∥ Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation. New York:American Society of Mechanical Engineers, 2012: 927?933.
62 KREWINKEL R, F?RBER J, ORTH U, et al. Validation of surface temperature measurements on a combustor liner under full-load conditions using a novel thermal history paint[J]. Journal of Engineering for Gas Turbines and Power2017139(4): 041508.
63 FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Application of an industrial sensor coating system on a Rolls-Royce jet engine for temperature detection[J]. Journal of Engineering for Gas Turbines and Power2013135(1): 012101.
64 FEIST J P, SOLLAZZO P Y, BERTHIER S, et al. Precision temperature detection using a phosphorescence sensor coating system on a Rolls-Royce Viper engine[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 917-926.
65 YA?EZ GONZALEZ A, PILGRIM C C, FEIST J P, et al. On-line temperature measurement inside a thermal barrier sensor coating during engine operation[J]. Journal of Turbomachinery2015137(10): 101004.
66 SOLLAZZO P Y, FEIST J P, BERTHIER S, et al. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection[C]∥AIP Conference Proceedings. New York: AIP, 2013: 897?902.
67 NAU P, YIN Z Y, LAMMEL O, et al. Wall temperature measurements in gas turbine combustors with thermographic phosphors[J]. Journal of Engineering for Gas Turbines and Power2019141(4): 041021.
68 NAU P, G?RS S, ARNDT C, et al. Wall temperature measurements in a full-scale gas turbine combustor test rig with fiber coupled phosphor thermometry[J]. Journal of Turbomachinery2021143(1): 011007.
69 NAU P, YIN Z Y, GEIGLE K P, et al. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor[J]. Applied Physics B2017123(12): 279.
70 ARNDT C M, NAU P, MEIER W. Characterization of wall temperature distributions in a gas turbine model combustor measured by 2D phosphor thermometry[J]. Proceedings of the Combustion Institute202138(1): 1867-1875.
71 ARAGUáS RODRíGUEZ S, JELíNEK T, MICHáLEK J, et al. Accelerated thermal profiling of gas turbine components using luminescent thermal history paints[J]. Journal of the Global Power and Propulsion Society20182: 344-361.
72 ELDRIDGE J I, ALLISON S W, JENKINS T P, et al. Surface temperature measurements from a stator vane doublet in a turbine afterburner flame using a YAG:Tm thermographic phosphor[J]. Measurement Science and Technology201627(12): 125205.
73 TOBIN K W, ALLISON S W, CATES M R, et al. High-temperature phosphor thermometry of rotating turbine blades[J]. AIAA Journal199028(18): 1485-1490.
74 MCCLEAN I P, SIMONS A J, THOMAS C B, et al. Comparison between thin film and bonded powder phosphors for thermographic sensing in gas turbine engines[J]. IEEE Transactions on Instrumentation and Measurement200049(1): 129-131.
75 JENKINS T P, HESS C F, ALLISON S W, et al. Measurements of turbine blade temperature in an operating aero engine using thermographic phosphors[J]. Measurement Science and Technology202031(4): 044003.
76 ZHANG Y L, GUOL, YANG Y P, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics201225(6): 948-953.
77 JEON H, LEE I, OH Y. Changes in high-temperature thermal properties of modified YSZ with various rare earth doping elements[J]. Ceramics International202248(6): 8177-8185.
78 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报200728(1): 196-200.
  JI X J, GONG S K, XU H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et AstronauticaSinica200728(1): 196-200 (in Chinese).
79 TIAN H L, WANG C L, GUO M Q, et al. Microstructure and luminescence properties of YSZ-based thermal barrier coatings modified by Eu2O3 [J]. Ceramics International202046(4): 4444-4453.
80 HEYES A L, FEIST J P, CHEN X, et al. Optical nondestructive condition monitoring of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power2008130(6): 061301.
81 刘延宽, 许婧, 李尧, 等. Eu3+掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J]. 稀有金属材料与工程202150(5): 1699-1705.
  LIU Y K, XU J, LIY, et al. Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J]. Rare Metal Materials and Engineering202150(5): 1699-1705 (in Chinese).
82 HALDAR S, WARREN P, FOULIARD Q, et al. Synchrotron XRD measurements of thermal barrier coating configurations with rare earth elements for phosphor thermometry[C]∥ Proceedings of ASME Turbo Expo2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019.
83 FOULIARD Q, HERNANDEZ J, EBRAHIMI H, et al. Synchrotron X-ray diffraction to quantify in?situ strain on rare-earth doped yttria-stabilized zirconia thermal barrier coatings[C]∥ Proceedings of ASME Turbo Expo2021:Turbomachinery Technical Conference and Exposition. New York: ASME, 2021.
Outlines

/