ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Multi⁃step method for numerical simulation of ice crystal icing
Received date: 2023-07-11
Revised date: 2023-08-03
Accepted date: 2023-10-11
Online published: 2023-11-01
Supported by
National Natural Science Foundation of China(52272428);National Key Research and Development Program of China(2021YFB2601700);Fundamental Research Funds for the Central Universities(YWF-22-L-732)
In recent years, ice crystal icing has emerged as a prominent and challenging research area in aircraft and engine anti-icing. This paper presents a computational model for accurate prediction of the ice crystal icing process. The proposed model encompasses a trajectory model that accounts for irregular ice crystal shapes, an adhesion model, an erosion model, and a thermodynamic model for icing. The multi-step method is employed to simulate the ice accumulation process, involving the updating of the airflow field, ice crystal particle trajectories, and thermodynamic calculations at each time step. Additionally, the dynamic mesh technology is utilized to update the geometric boundaries of the ice formation. The research findings demonstrate that the application of the multi-step method enables stable simulation of ice formation. The stability of the ice shapes is attributed to the combined effects of reduced adhesion on the surface of ice crystals and increased erosion on pre-existing ice, ultimately leading to a dynamic equilibrium between the adhesion and erosion processes. It should be noted that the proposed model and computational approach in this paper are specifically suited for low melting rate conditions, which can guide the precise simulation of three-dimensional structural ice crystal icing in future investigations. While high melting rate scenarios would necessitate consideration of the downstream flow of ice in the future.
Key words: ice crystal icing; adhesion; erosion; multi-step method; dynamic mesh
Xueqin BU , Ping HUANG , Guiping LIN , Yanxia LOU . Multi⁃step method for numerical simulation of ice crystal icing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(14) : 129308 -129308 . DOI: 10.7527/S1000-6893.2023.29308
1 | KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences, 1998, 34(5): 257-345. |
2 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
3 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
4 | 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报, 2023, 44(1): 626973. |
CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626973 (in Chinese). | |
5 | 郭琪磊, 桑为民, 牛俊杰, 等. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518. |
GUO Q L, SANG W M, NIU J J, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627518 (in Chinese). | |
6 | CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. |
7 | 刘晓林, 朱彦曈, 王泽林澜, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
8 | MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 206. |
9 | 陈光. GEnx 发动机结冰问题初探[J]. 国际航空, 2014(2): 72-73. |
CHEN G. Discussion on GEnx engine icing[J]. International Aviation, 2014(2): 72-73 (in Chinese). | |
10 | 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650. |
YUAN Q H, FAN J, BAI G C. Review of ice crystal icing in aero-engines[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650 (in Chinese). | |
11 | 黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178. |
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese). | |
12 | MASON J G, CHOW P, FULEKI D M. Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 1. |
13 | ADDY Jr H E, VERES J P. An overview of NASA engine ice-crystal icing research[C]∥ International Conference on Aircraft and Engine Icing and Ground Deicing. Warrendale: Society of Automotive Engineers, Inc., 2011: 2011-217254. |
14 | DEZITTER F, GRANDIN A, BRENGUIER J L, et al. HAIC - high altitude ice crystals[C]∥ 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013: 2674. |
15 | FEDERAL AVIATION ADMINISTRATION. 33.68 Amendment 33-34 induction system icing[R]. Washington, D. C.:Federal Aviation Administration,2015. |
16 | AL-KHALIL K, IRANI E, MILLER D. Mixed phase icing simulation and testing at the cox icing wind tunnel[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 903. |
17 | MACLEOD J D. Development of ice crystal facilities for engine testing[C]∥ SAE Aircraft and Engine Icing International Conference. Warrendale: SAE International, 2007: 2007-01-3290. |
18 | MACLEOD J, FULEKI D. Ice crystal accretion test rig development for a compressor transition duct[C]∥ AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7529. |
19 | CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]∥ 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012: 3035. |
20 | CURRIE T C, FULEKI D, MAHALLATI A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines[C]∥ 6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014: 3049. |
21 | VAN ZANTE J F, BENCIC T J, RATVASKY T P. NASA Glenn propulsion systems lab ice crystal cloud characterization update 2015[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3897. |
22 | AGUI J H, STRUK P M, BARTKUS T P. Total temperature measurements using a rearward facing probe in supercool liquid droplet and ice crystal clouds[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 3970. |
23 | KING M C, MANIN J, VAN ZANTE J F, et al. Particle size calibration testing in the NASA propulsion system laboratory[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 3971. |
24 | STRUK P M, AGUI J H, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2019: 2019-01-1921. |
25 | BAUMERT A, BANSMER S E, BACHER M. Implementation of an innovative ice crystal generation system to the Icing Wind Tunnel Braunschweig[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1225. |
26 | BAUMERT A, BANSMER S, SATTLER S, et al. Simulating natural ice crystal cloud conditions for icing wind tunnel experiments-A review on the design, commissioning and calibration of the TU Braunschweig ice crystal generation system[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 4053. |
27 | BAUMERT A, BANSMER S, TRONTIN P, et al. Experimental and numerical investigations on aircraft icing at mixed phase conditions[J]. International Journal of Heat and Mass Transfer, 2018, 123: 957-978. |
28 | STRUK P M, RATVASKY T P, BENCIC T, et al. An initial study of the fundamentals of ice crystal icing physics in the NASA propulsion systems laboratory[C]∥ 9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 4242. |
29 | BARTKUS T P, STRUK P M, TSAO J C. Evaluation of a thermodynamic ice-crystal icing model using experimental ice accretion data[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 4129. |
30 | AYAN E, OZGEN S, MURAT C, et al. Prediction of ice crystal accretion with TAICE[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015: 2015-01-2148. |
31 | GRIFT E J, NORDE E, VAN DER WEIDE E T A, et al. Computational method for ice crystal trajectories in a turbofan compressor[C]∥ International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015: 2015-01-2139. |
32 | AOUIZERATE G, CHARTON V, BALLAND M, et al. Ice crystals trajectory calculations in a turbofan engine[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 4130. |
33 | NORDE E, SENONER J M, VAN DER WEIDE E T A, et al. Eulerian and Lagrangian ice-crystal trajectory simulations in a generic turbofan compressor[J]. Journal of Propulsion and Power, 2019, 35(1): 26-40. |
34 | VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[C]∥ 6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014: 2199. |
35 | TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed-phase and glaciated icing conditions[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 3742. |
36 | 马乙楗, 柴得林, 王强, 等. 基于蒙特卡洛方法的冰晶撞击特性计算[J]. 南京航空航天大学学报, 2023, 55(2): 291-301. |
MA Y J, CHAI D L, WANG Q, et al. Calculation of ice crystal impact characteristics using Monte Carlo method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(2): 291-301 (in Chinese). | |
37 | 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 627817. |
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627817 (in Chinese). | |
38 | 姜飞飞, 董威, 郑梅, 等. 冰晶在涡扇发动机内相变换热特性[J]. 航空动力学报, 2019, 34(3): 567-575. |
JIANG F F, DONG W, ZHENG M, et al. Phase change heat transfer characteristic of ice crystal ingested into turbofan engine[J]. Journal of Aerospace Power, 2019, 34(3): 567-575 (in Chinese). | |
39 | 卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085. |
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese). | |
40 | ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2473-2483. |
41 | 谭燕. 基于欧拉方法的2维翼型冰晶结冰数值计算[J]. 航空发动机, 2020, 46(4): 30-35. |
TAN Y. Numerical calculation of 2D airfoil ice crystal icing based on Euler method[J]. Aeroengine, 2020, 46(4): 30-35 (in Chinese). | |
42 | 郭琪磊, 牛俊杰, 安博, 等. 混合相态冰晶积冰的数值研究[J]. 空气动力学学报, 2021, 39(2): 168-175. |
GUO Q L, NIU J J, AN B, et al. Numerical simulation of ice crystal icing under mixed-phase conditions[J]. Acta Aerodynamica Sinica, 2021, 39(2): 168-175 (in Chinese). | |
43 | 黄平, 卜雪琴, 林贵平, 等. 冰晶粒子运动过程中的相变特性[J]. 航空动力学报, 2022, 37(7): 1379-1391. |
HUANG P, BU X Q, LIN G P, et al. Phase transition characteristics of ice crystal particles in motion[J]. Journal of Aerospace Power, 2022, 37(7): 1379-1391 (in Chinese). | |
44 | NORDE E, VAN DER WEIDE E T A, HOEIJMAKE? RS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2018, 56(1): 222-234. |
/
〈 |
|
〉 |