special column

Optimization method for five⁃axis on⁃machine measurement path based on error distribution graph

  • Yanheng GUO ,
  • Neng WAN ,
  • Qixin ZHUANG ,
  • Bo LIU ,
  • Xinxin LI ,
  • Dao WANG
Expand
  • 1.School of Mechanical Engineering,Northwest Polytechnical University,Xi’an 710072,China
    2.AECC South Industry Co. ,Ltd,Zhuzhou 412002,China

Received date: 2023-07-03

  Revised date: 2023-08-05

  Accepted date: 2023-09-07

  Online published: 2023-11-01

Supported by

National Natural Science Foundation of China(52175435);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023051)

Abstract

In five-axis on-machine measurement, the measurement path planning determines calibration efficiency, measurement efficiency, and measurement accuracy under the influence of machine positioning errors. In order to obtain a measurement path that balances measurement accuracy and efficiency, this paper proposes an on-machine measurement path optimization method based on the error distribution graph. First, the measurement feasible graph of each to-be-measured point is constructed based on the results of interference checking. Then, a positioning error impact model is used to predict the measurement error distribution within the feasible graph. To improve the on-machine measurement accuracy and efficiency, the measurement error is used as the accuracy optimization target, and the efficiency optimization target is constructed by combining the measurement path length and the number of calibration points, and therefore, the multi-objective optimization model is established. NSGA-Ⅱ is used to solve the optimization model and optimize the measurement path. Finally, the centrifugal impeller is used as an example to verify that this method can not only reduce the ruby touch points and measurement path length to improve efficiency, but also accurately compensate for the pre-travel error and reduce the effect of the introduced machine positioning error to improve the measurement accuracy. The experimental results show that the optimized method can reduce the calibration time by 55.28%, the measurement time by 10.2%, and the average measurement error by 26.7%, indicating that the method has good feasibility.

Cite this article

Yanheng GUO , Neng WAN , Qixin ZHUANG , Bo LIU , Xinxin LI , Dao WANG . Optimization method for five⁃axis on⁃machine measurement path based on error distribution graph[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 629261 -629261 . DOI: 10.7527/S1000-6893.2023.29261

References

1 徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报202142(10): 524867.
  XU J T, NIU J B, CHEN M S, et al. Research progress in multi-axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524867 (in Chinese).
2 陈岳坪, 高健, 邓海祥, 等. 复杂曲面零件在线检测与误差补偿方法[J]. 机械工程学报201248(23): 143-151.
  CHEN Y P, GAO J, DENG H X, et al. On-line inspection and machining error compensation for complex surfaces[J]. Journal of Mechanical Engineering201248(23): 143-151 (in Chinese)
3 熊青春, 王家序, 周青华. 融合机床精度与工艺参数的铣削误差预测模型[J]. 航空学报201839(8): 421713.
  XIONG Q C, WANG J X, ZHOU Q H. Prediction model of machining errors based on precision and process parameters of machine tools[J]. Acta Aeronautica et Astronautica Sinica201839(8): 421713 (in Chinese).
4 BUTLER C. An investigation into the performance of probes on coordinate measuring machines[J]. Industrial Metrology19912(1): 59-70.
5 DOBOSZ M, WO?NIAK A. CMM touch trigger probes testing using a reference axis[J]. Precision Engineering200529(3): 281-289.
6 JANKOWSKI M, WOZNIAK A. Mechanical model of errors of probes for numerical controlled machine tools[J]. Measurement201677: 317-326.
7 LI S M, ZENG L, FENG P F, et al. Accurate compensation method for probe pre-travel errors in on-machine inspections[J]. The International Journal of Advanced Manufacturing Technology2019103(5): 2401-2410.
8 杨勇明, 汪中厚, 刘雷, 等. 磨齿机在机检测系统的测头综合预行程误差建模[J]. 机械工程学报202258(21): 250-265.
  YANG Y M, WANG Z H, LIU L, et al. Modeling of probe comprehensive pre-travel error for on-machine inspection system of gear grinder[J]. Journal of Mechanical Engineering202258(21): 250-265 (in Chinese).
9 王堃, 孙程成, 钱锋, 等. 基于激光干涉仪的数控机床定位精度检测与误差补偿方法[J]. 航空制造技术201053(21): 90-93.
  WANG K, SUN C C, QIAN F, et al. Position accuracy measuring and error compensation method of NC machine tool based on laser interferometer[J]. Aeronautical Manufacturing Technology201053(21): 90-93 (in Chinese).
10 李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报201753(7): 113-128.
  LI J, XIE F G, LIU X J, et al. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools[J]. Journal of Mechanical Engineering201753(7): 113-128 (in Chinese).
11 雷尼绍. 全新XR20-W系统显著提高回转轴校准的灵活性和便利性[J]. 航空制造技术201154(22): 120-121.
  LEI N S. New system greatly extends flexibility and ease for rotary axis calibration[J]. Aeronautical Manufacturing Technology201154(22): 120-121 (in Chinese).
12 IBARAKI S, IRITANI T, MATSUSHITA T. Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe[J]. International Journal of Machine Tools and Manufacture201368: 21-29.
13 CHEN Y T, MORE P, LIU C S. Identification and verification of location errors of rotary axes on five-axis machine tools by using a touch-trigger probe and a sphere[J]. The International Journal of Advanced Manufacturing Technology2019100(9): 2653-2667.
14 钟学敏. 考虑误差耦合的数控机床空间误差建模、辨识及多层误差溯源研究[D]. 武汉: 华中科技大学, 2019.
  ZHONG X M. Research on the modelling, identification of volumetric error considering error coupling and traceability of multi-level geometric errors for CNC machine tools[D].Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
15 BARAKAT N A, ELBESTAWI M A, SPENCE A D. Kinematic and geometric error compensation of a coordinate measuring machine[J]. International Journal of Machine Tools and Manufacture200040(6): 833-850.
16 高峰, 赵柏涵, 李艳, 等. 多轴数控机床的在机测量方案创成及优化方法[J]. 机械工程学报201753(20): 13-19.
  GAO F, ZHAO B H, LI Y, et al. On-machine measurement scheme generation and optimization method for multi-axis CNC machine tool[J]. Journal of Mechanical Engineering201753(20): 13-19 (in Chinese).
17 南长峰, 吴宝海, 张定华. 复杂通道类零件五坐标加工全局干涉处理方法[J]. 航空学报201031(10): 2103-2108.
  NAN C F, WU B H, ZHANG D H. A global interference-free tool path generation algorithm for five-axis end milling of complex tunnel parts[J]. Acta Aeronautica et Astronautica Sinica201031(10): 2103-2108 (in Chinese).
18 HE G Y, HUANG X, MA W K, et al. CAD-based measurement planning strategy of complex surface for five axes on machine verification[J]. The International Journal of Advanced Manufacturing Technology201791(5): 2101-2111.
19 李文龙, 王刚, 尹周平. 闭式叶轮五轴原位检测路径规划与实验验证[J]. 航空学报201839(3): 421474.
  LI W L, WANG G, YIN Z P. 5-axis onsite inspection path generation and experimental verification of enclosed impeller[J]. Acta Aeronautica et Astronautica Sinica201839(3): 421474 (in Chinese).
20 庄其鑫, 莫蓉, 万能, 等. 基于可行图的五轴在机测量探针轴向优化方法[J]. 航空学报202041(5): 423403.
  ZHUANG Q X, MO R, WAN N, et al. Stylus orientation optimization method in five-axis on-machine measurement based on feasible graph[J]. Acta Aeronautica et Astronautica Sinica202041(5): 423403 (in Chinese)
21 BALASUBRAMANIAM M, LAXMIPRASAD P, SARMA S, et al. Generating 5-axis NC roughing paths directly from a tessellated representation[J]. Computer-Aided Design200032(4): 261-277.
22 LI Y M, ZENG L, TANG K, et al. A dynamic pre-travel error prediction model for the kinematic touch trigger probe[J]. Measurement2019146: 689-704.
23 LI S M, ZENG L, FENG P F, et al. An accurate probe pre-travel error compensation model for five-axis on-machine inspection system[J]. Precision Engineering202062: 256-264.
Outlines

/