Solid Mechanics and Vehicle Conceptual Design

Equipment remaining useful life prediction method with dynamic calibration of degradation model

  • Chao REN ,
  • Huiqin LI ,
  • Tianmei LI ,
  • Jianxun ZHANG ,
  • Xiaosheng SI
Expand
  • Zhijian Laboratory,Rocket Force University of Engineering,Xi’an 710025,China

Received date: 2022-12-01

  Revised date: 2022-12-28

  Accepted date: 2023-02-06

  Online published: 2023-02-20

Supported by

National Natural Science Foundation of China(62233017)

Abstract

Remaining Useful Life (RUL) prediction is the key technique to implement the health management of stochastic degrading equipment. As one of the typical methods for RUL prediction, statistical data-driven methods generally adopt the stochastic model to characterize the evolving progression of the equipment performance degradation variable and provide the probabilistic distribution of the RUL to facilitate the uncertainty quantification of the RUL prediction. However, selecting the functional form of the degradation model is itself a challenging problem. More importantly, inappropriate selection of the functional form for the degradation model leads to difficult and ineffective calibration of the degradation model simply by updating the model parameters, thus affecting prediction accuracy. In this paper, an equipment RUL prediction method is developed based on the dynamic calibration of degradation models. First, a stochastic degradation model is constructed based on the nonlinear diffusion process and the model parameters are estimated through the degradation monitoring data of the equipment to predict the future degradation trend. Then, a parametric model for the degradation prediction errors is established to compensate for the degradation model to calibrate its functional form. Meanwhile, the calibrated model parameters are updated based on the Bayesian method to achieve simultaneous calibration of the functional form and the degradation model parameters. With the calibrated model, the equipment RUL distribution is derived for the RUL prediction. Finally, the developed method is validated by numerical simulations and lithium battery data.

Cite this article

Chao REN , Huiqin LI , Tianmei LI , Jianxun ZHANG , Xiaosheng SI . Equipment remaining useful life prediction method with dynamic calibration of degradation model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 228345 -228345 . DOI: 10.7527/S1000-6893.2022.28345

References

1 李天梅 司小胜 张建勋. 多源传感监测线性退化设备 数模联动的剩余寿命预测方法[J].航空学报202344(8):227190.
  LI T M, SI X S, ZHANG J X. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices [J]. Acta Aeronautica et Astronautica Sinica202344(8):227190 (in Chinese).
2 WEI Y P, WU D Z. Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms[J]. Reliability Engineering & System Safety2023230: 108947.
3 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报202243(9): 625574.
  CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625574 (in Chinese).
4 PENG Y, LIU D T, PENG X Y. A review: Prognostics and health management[J]. Journal of Electronic Measurement and Instrument201024(1): 1-9.
5 DAWID A P. Statistical theory: the prequential approach (with discussion). Journal of Royal Statistical Society: Series A, 1984147(2): 278–292.
6 JARDINE A K S, LIN D M, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing200620(7): 1483-1510.
7 FAN J J, YUNG K C, PECHT M. Physics-of-failure-based prognostics and health management for high-power white light-emitting diode lighting[J]. IEEE Transactions on Device and Materials Reliability201111(3): 407-416.
8 SI X S, WANG W B, HU C H, et al. Remaining useful life estimation - A review on the statistical data driven approaches[J]. European Journal of Operational Research2011213(1): 1-14.
9 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报201955(8): 1-13.
  PEI H, HU C H, SI X S, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering201955(8): 1-13 (in Chinese).
10 张晟斐, 李天梅, 胡昌华, 等. 基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J]. 航空学报202243(8): 225708.
  ZHANG S F, LI T M, HU C H, et al. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J]. Acta Aeronautica et Astronautica Sinica202243(8): 225708 (in Chinese).
11 LI X, XU Y X, LI N P, et al. Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks[J]. IEEE/CAA Journal of Automatica Sinica202210(1): 121-134.
12 JIN R B, WU M, WU K Y, et al. Position encoding based convolutional neural networks for machine remaining useful life prediction[J]. IEEE/CAA Journal of Automatica Sinica20229(8): 1427-1439.
13 CHANG Z H, YUAN W, HUANG K. Remaining useful life prediction for rolling bearings using multi-layer grid search and LSTM[J]. Computers and Electrical Engineering2022101: 108083.
14 刘学娟. 基于随机系数回归模型的退化过程及维修策略[J]. 控制与决策202136(3): 754-760.
  LIU X J. Degradation process and maintenance planning based on random coefficient regression model[J]. Control and Decision202136(3): 754-760 (in Chinese).
15 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报202041(2): 223291.
  WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica202041(2): 223291 (in Chinese).
16 GIORGIO M, MELE A, PULCINI G. A perturbed gamma degradation process with degradation dependent non-Gaussian measurement errors[J]. Applied Stochastic Models in Business and Industry201935(2): 198-210.
17 CHEN X D, SUN X L, SI X S, et al. Remaining useful life prediction based on an adaptive inverse Gaussian degradation process with measurement errors[J]. IEEE Access20198: 3498-3510.
18 LI T M, PEI H, PANG Z N, et al. A sequential Bayesian updated Wiener process model for remaining useful life prediction[J]. IEEE Access20198: 5471-5480.
19 JOSEPH V R, YU I T. Reliability improvement experiments with degradation data[J]. IEEE Transactions on Reliability200655(1): 149-157.
20 SI X S, REN Z Q, HU X X, et al. A novel degradation modeling and prognostic framework for closed-loop systems with degrading actuator[J]. IEEE Transactions on Industrial Electronics201967(11): 9635-9647.
21 ZHANG Z X, HU C H, SI X S, et al. Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects[J]. Journal of the Franklin Institute2017354(6): 2477-2499.
22 ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics201966(2): 1585-1597.
23 ZHANG Z X, SI X S, HU C H, et al. Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods[J]. European Journal of Operational Research2018271(3): 775-796.
24 SI X S, WANG W B, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability201261(1): 50-67.
25 NGUYEN K T P, FOULADIRAD M, GRALL A. Model selection for degradation modeling and prognosis with health monitoring data[J]. Reliability Engineering & System Safety2018169: 105-116.
26 WANG Z Q, HU C H, WANG W B, et al. An additive Wiener process-based prognostic model for hybrid deteriorating systems[J]. IEEE Transactions on Reliability201463(1): 208-222.
27 SAHA B, GOEBEL K. Battery data set[Z]. Moffett Field, CA: NASAAmes Research Center.
Outlines

/