ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack
Received date: 2022-12-19
Revised date: 2023-03-10
Accepted date: 2023-03-29
Online published: 2023-04-12
Supported by
National Natural Science Foundation of China(12072282)
Due to significant nonlinear and unsteady effects, it is difficult to accurately simulate the maneuver flight characteristics of aircraft at high angle of attack by existing wind tunnel experiments and numerical methods. To improve the accuracy of maneuver flight simulation at high angle of attack, the physical-model-embedding ensemble neural network was developed to accurately model the unsteady aerodynamics of aircraft at high angle of attack, and the aircraft motion equation were further coupled in time domain to realize maneuver flight simulation at high angle of attack. Taking a typical fighter as the research object, the open-loop broadband excitation, open-loop harmonic excitation and post-stall maneuver flight data of longitudinal flight at high angle of attack are utilized as sample data for aerodynamic modeling. Three types of aerodynamic models are constructed and compared, including the traditional dynamic derivative model, the black-box neural network model and the ensemble neural network model. Furthermore, the flight characteristics of coupled simulation are further compared, and the idea of using the flight simulation method to test the robustness of the aerodynamic model is proposed.Results show that the lift coefficient error of aerodynamic modeling of the physical-model-embedding ensemble neural network is 57% lower than that of the traditional dynamic derivative model, and the robustness and stability in the coupling process are better. The aircraft response error is 63% lower than that of the black-box neural network model, which proves the advantages and engineering potential of the proposed modeling framework for small-sample flight data identification.
Huailu LI , Xu WANG , Xiao WANG , Tong ZHAO , Weiwei ZHANG . Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 128410 -128410 . DOI: 10.7527/S1000-6893.2022.28410
1 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
2 | TIRPAK J A. Air force creates new PEO for NGAD, applying “Digital Century Series” idea [EB/OL]. (2019-10-02)[2022-12-29].. |
3 | 曲东才. 战斗机过失速机动与近距格斗空战[J]. 航空兵器, 2000, 7(4): 12-14. |
QU D C. Fighter post-stall maneuver and close combat air combat[J]. Aero Weaponry, 2000, 7(4): 12-14 (in Chinese). | |
4 | 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8): 2717-2734. |
SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734 (in Chinese). | |
5 | HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566. |
6 | 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1-25. |
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1-25 (in Chinese). | |
7 | 张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述[J]. 航空工程进展, 2022, 13(3): 74-85. |
ZHANG Z J, ZHAO T, SUN Y, et al. Review of the study on high-angle-of-attack flight problems of aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 74-85 (in Chinese). | |
8 | 肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述[J]. 航空学报, 2020, 41(6): 523451. |
XIAO Z X, CUI W Y, LIU J, et al. Review of numerical research on unsteady flows of the new generation fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523451 (in Chinese). | |
9 | 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. |
WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347 (in Chinese). | |
10 | KALVISTE J. Use of rotary balance and forced oscillation test data in six degrees of freedom simulation[C]∥ Proceedings of the 9th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1982. |
11 | 饶秋磊, 韩意新. 大迎角气动力建模与失速/尾旋模态仿真[J]. 应用力学学报, 2018, 35(3): 472-478. |
RAO Q L, HAN Y X. High angle of attack aerodynamic modeling and simulation and analysis of stall/spin mode[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 472-478 (in Chinese). | |
12 | 李林刚, 高浩. 飞机大迎角气动数据的组成与应用[J]. 飞行力学, 1997, 15(1): 1-7. |
LI L G, GAO H. Aero datas integration and application of the airplane at high angle of attack[J]. Flight Dynamics, 1997, 15(1): 1-7 (in Chinese). | |
13 | MURCH A M, FOSTER J V. Recent NASA research on aerodynamic modeling of post-stall and spin dynamics of large transport airplanes:AIAA-2007-0463[R]. Reston: AIAA, 2007. |
14 | BRYAN G H, WILLIAMS W E. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London, 1904, 73(488/489/490/491/492/493/494/495/496): 100-116. |
15 | LIN G F, LAN C E, BRANDON J M, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications: AIAA-1997-3643[R]. Reston: AIAA, 1997. |
16 | TOBAK M. On the use of the indicial-function concept in the analysis of unsteady motions of wings and wing-tail combinations: NACA-TR-1188 [R].Washington,D.C.:NACA,1954. |
17 | GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. |
18 | 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. |
WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398 (in Chinese). | |
19 | 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报, 2020, 41(6): 523440. |
SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523440 (in Chinese). | |
20 | SHEN L, HUANG D, WU G X. Time delay compensation in lateral-directional flight control systems at high angles of attack[J]. Chinese Journal of Aeronautics, 2021, 34(4): 1-18. |
21 | 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报, 2020, 41(8): 123664. |
CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123664 (in Chinese). | |
22 | 岑飞, 刘志涛, 蒋永, 等. 民机极限飞行状态非定常气动力建模[J]. 航空学报, 2022, 43(8): 125582. |
CEN Fei, LIU Z T, JIANG Y, et al. Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125582 (in Chinese). | |
23 | KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725. |
24 | 史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究[J]. 空气动力学学报, 2012, 30(1): 108-112. |
SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics[J]. Acta Aerodynamica Sinica, 2012, 30(1): 108-112 (in Chinese). | |
25 | ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028. |
26 | GHOREYSHI M, JIRáSEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy[J]. Aerospace Science and Technology, 2013, 28(1): 133-144. |
27 | LI W J, LAIMA S J, JIN X W, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations[J]. Nonlinear Dynamics, 2020, 100(3): 2071-2087. |
28 | LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177. |
29 | BAGHERZADEH S A. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition[J]. Aerospace Science and Technology, 2018, 75: 155-171. |
30 | LYU Y X, CAO Y Y, ZHANG W G, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics[J]. Aerospace Science and Technology, 2018, 80: 269-280. |
31 | GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft: AIAA-2004-5276[R]. Reston: AIAA, 2004. |
32 | 陈翔, 展京霞, 陈科, 等. 非定常气动力建模研究与虚拟飞行试验验证[J]. 实验流体力学, 2022, 36(3): 65-72. |
CHEN X, ZHAN J X, CHEN K, et al. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 65-72 (in Chinese). | |
33 | 李仑, 王刚, 索谦, 等. 飞行器阵风响应的CFD-6DOF仿真分析[J]. 航空工程进展, 2015, 6(1): 26-31. |
LI L, WANG G, SUO Q, et al. CFD-6DOF simulation analysis of aircraft gust response[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1): 26-31 (in Chinese). | |
34 | 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报, 2023, 44(6): 85-101. |
WANG P H, WU Z G, YANG C, et al. Patch module method for flight simulation of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 85-101 (in Chinese). | |
35 | 王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真[J]. 航空学报, 2017, 38(1): 120169. |
WANG G, XING Y, ZHU Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120169 (in Chinese). | |
36 | 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1): 125474. |
SHI Y, WAN Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 125474 (in Chinese). | |
37 | WANG X, KOU J Q, ZHANG W W. Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5107-5121. |
38 | ZHANG W B, GUO X C, WANG C Y, et al. A POD-based center selection for RBF neural network in time series prediction problems[C]∥International Conference on Adaptive and Natural Computing Algorithms. Berlin: Springer, 2007: 189-198. |
39 | KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49: 197-208. |
40 | WANG X, KOU J Q, ZHANG W W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal, 2022, 60(7): 4428-4439. |
41 | NGUYEN L T, OGBURN M E, GILBERT W P,et al. Simulator study of stall/post-stall characteristics of a fighter airplane with longitudinal static stability:NASA-TP-1538[R]. Washington, D.C.: NASA, 1979. |
42 | KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139. |
43 | EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway: IEEE Press, 2002: 39-43. |
/
〈 |
|
〉 |