Fluid Mechanics and Flight Mechanics

Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack

  • Huailu LI ,
  • Xu WANG ,
  • Xiao WANG ,
  • Tong ZHAO ,
  • Weiwei ZHANG
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.AVIC Shenyang Aircraft Design and Research Institute,Shenyang 110035,China

Received date: 2022-12-19

  Revised date: 2023-03-10

  Accepted date: 2023-03-29

  Online published: 2023-04-12

Supported by

National Natural Science Foundation of China(12072282)

Abstract

Due to significant nonlinear and unsteady effects, it is difficult to accurately simulate the maneuver flight characteristics of aircraft at high angle of attack by existing wind tunnel experiments and numerical methods. To improve the accuracy of maneuver flight simulation at high angle of attack, the physical-model-embedding ensemble neural network was developed to accurately model the unsteady aerodynamics of aircraft at high angle of attack, and the aircraft motion equation were further coupled in time domain to realize maneuver flight simulation at high angle of attack. Taking a typical fighter as the research object, the open-loop broadband excitation, open-loop harmonic excitation and post-stall maneuver flight data of longitudinal flight at high angle of attack are utilized as sample data for aerodynamic modeling. Three types of aerodynamic models are constructed and compared, including the traditional dynamic derivative model, the black-box neural network model and the ensemble neural network model. Furthermore, the flight characteristics of coupled simulation are further compared, and the idea of using the flight simulation method to test the robustness of the aerodynamic model is proposed.Results show that the lift coefficient error of aerodynamic modeling of the physical-model-embedding ensemble neural network is 57% lower than that of the traditional dynamic derivative model, and the robustness and stability in the coupling process are better. The aircraft response error is 63% lower than that of the black-box neural network model, which proves the advantages and engineering potential of the proposed modeling framework for small-sample flight data identification.

Cite this article

Huailu LI , Xu WANG , Xiao WANG , Tong ZHAO , Weiwei ZHANG . Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 128410 -128410 . DOI: 10.7527/S1000-6893.2022.28410

References

1 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报202041(6): 524377.
  YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524377 (in Chinese).
2 TIRPAK J A. Air force creates new PEO for NGAD, applying “Digital Century Series” idea [EB/OL]. (2019-10-02)[2022-12-29]..
3 曲东才. 战斗机过失速机动与近距格斗空战[J]. 航空兵器20007(4): 12-14.
  QU D C. Fighter post-stall maneuver and close combat air combat[J]. Aero Weaponry20007(4): 12-14 (in Chinese).
4 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报201536(8): 2717-2734.
  SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2717-2734 (in Chinese).
5 HERBST W B. Future fighter technologies[J]. Journal of Aircraft198017(8): 561-566.
6 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报202240(1): 1-25.
  WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica202240(1): 1-25 (in Chinese).
7 张子军, 赵彤, 孙烨, 等. 飞机大迎角飞行问题研究综述[J]. 航空工程进展202213(3): 74-85.
  ZHANG Z J, ZHAO T, SUN Y, et al. Review of the study on high-angle-of-attack flight problems of aircraft[J]. Advances in Aeronautical Science and Engineering202213(3): 74-85 (in Chinese).
8 肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述[J]. 航空学报202041(6): 523451.
  XIAO Z X, CUI W Y, LIU J, et al. Review of numerical research on unsteady flows of the new generation fighters[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523451 (in Chinese).
9 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报201637(8): 2331-2347.
  WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica201637(8): 2331-2347 (in Chinese).
10 KALVISTE J. Use of rotary balance and forced oscillation test data in six degrees of freedom simulation[C]∥ Proceedings of the 9th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1982.
11 饶秋磊, 韩意新. 大迎角气动力建模与失速/尾旋模态仿真[J]. 应用力学学报201835(3): 472-478.
  RAO Q L, HAN Y X. High angle of attack aerodynamic modeling and simulation and analysis of stall/spin mode[J]. Chinese Journal of Applied Mechanics201835(3): 472-478 (in Chinese).
12 李林刚, 高浩. 飞机大迎角气动数据的组成与应用[J]. 飞行力学199715(1): 1-7.
  LI L G, GAO H. Aero datas integration and application of the airplane at high angle of attack[J]. Flight Dynamics199715(1): 1-7 (in Chinese).
13 MURCH A M, FOSTER J V. Recent NASA research on aerodynamic modeling of post-stall and spin dynamics of large transport airplanes:AIAA-2007-0463[R]. Reston: AIAA, 2007.
14 BRYAN G H, WILLIAMS W E. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London190473(488/489/490/491/492/493/494/495/496): 100-116.
15 LIN G F, LAN C E, BRANDON J M, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications: AIAA-1997-3643[R]. Reston: AIAA, 1997.
16 TOBAK M. On the use of the indicial-function concept in the analysis of unsteady motions of wings and wing-tail combinations: NACA-TR-1188 [R].Washington,D.C.:NACA,1954.
17 GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft199431(5): 1109-1115.
18 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报199617(4): 391-398.
  WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica199617(4): 391-398 (in Chinese).
19 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报202041(6): 523440.
  SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523440 (in Chinese).
20 SHEN L, HUANG D, WU G X. Time delay compensation in lateral-directional flight control systems at high angles of attack[J]. Chinese Journal of Aeronautics202134(4): 1-18.
21 岑飞, 李清, 刘志涛, 等. 民机极限飞行状态的动态气动力试验与建模[J]. 航空学报202041(8): 123664.
  CEN F, LI Q, LIU Z T, et al. Unsteady aerodynamics test and modeling of civil aircraft under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica202041(8): 123664 (in Chinese).
22 岑飞, 刘志涛, 蒋永, 等. 民机极限飞行状态非定常气动力建模[J]. 航空学报202243(8): 125582.
  CEN Fei, LIU Z T, JIANG Y, et al. Unsteady aerodynamics modeling of civil transport configuration under extreme flight conditions[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125582 (in Chinese).
23 KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences2021125: 100725.
24 史志伟, 王峥华, 李俊成. 径向基神经网络在非线性非定常气动力建模中的应用研究[J]. 空气动力学学报201230(1): 108-112.
  SHI Z W, WANG Z H, LI J C. The research of RBFNN in modeling of nonlinear unsteady aerodynamics[J]. Acta Aerodynamica Sinica201230(1): 108-112 (in Chinese).
25 ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal201250(5): 1019-1028.
26 GHOREYSHI M, JIRáSEK A, CUMMINGS R M. Computational approximation of nonlinear unsteady aerodynamics using an aerodynamic model hierarchy[J]. Aerospace Science and Technology201328(1): 133-144.
27 LI W J, LAIMA S J, JIN X W, et al. A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations[J]. Nonlinear Dynamics2020100(3): 2071-2087.
28 LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics201996(3): 2157-2177.
29 BAGHERZADEH S A. Nonlinear aircraft system identification using artificial neural networks enhanced by empirical mode decomposition[J]. Aerospace Science and Technology201875: 155-171.
30 LYU Y X, CAO Y Y, ZHANG W G, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics[J]. Aerospace Science and Technology201880: 269-280.
31 GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft: AIAA-2004-5276[R]. Reston: AIAA, 2004.
32 陈翔, 展京霞, 陈科, 等. 非定常气动力建模研究与虚拟飞行试验验证[J]. 实验流体力学202236(3): 65-72.
  CHEN X, ZHAN J X, CHEN K, et al. Unsteady aerodynamic modeling research and virtual flight test verification[J]. Journal of Experiments in Fluid Mechanics202236(3): 65-72 (in Chinese).
33 李仑, 王刚, 索谦, 等. 飞行器阵风响应的CFD-6DOF仿真分析[J]. 航空工程进展20156(1): 26-31.
  LI L, WANG G, SUO Q, et al. CFD-6DOF simulation analysis of aircraft gust response[J]. Advances in Aeronautical Science and Engineering20156(1): 26-31 (in Chinese).
34 王培涵, 吴志刚, 杨超, 等. 一种适用于弹性飞机飞行仿真的补丁方法[J]. 航空学报202344(6): 85-101.
  WANG P H, WU Z G, YANG C, et al. Patch module method for flight simulation of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica202344(6): 85-101 (in Chinese).
35 王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真[J]. 航空学报201738(1): 120169.
  WANG G, XING Y, ZHU Y N. Aerodynamic modeling and flight trajectory simulation of spinning projectile[J]. Acta Aeronautica et Astronautica Sinica201738(1): 120169 (in Chinese).
36 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报202243(1): 125474.
  SHI Y, WAN Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica202243(1): 125474 (in Chinese).
37 WANG X, KOU J Q, ZHANG W W. Unsteady aerodynamic modeling based on fuzzy scalar radial basis function neural networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019233(14): 5107-5121.
38 ZHANG W B, GUO X C, WANG C Y, et al. A POD-based center selection for RBF neural network in time series prediction problems[C]∥International Conference on Adaptive and Natural Computing Algorithms. Berlin: Springer, 2007: 189-198.
39 KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology201649: 197-208.
40 WANG X, KOU J Q, ZHANG W W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal202260(7): 4428-4439.
41 NGUYEN L T, OGBURN M E, GILBERT W P,et al. Simulator study of stall/post-stall characteristics of a fighter airplane with longitudinal static stability:NASA-TP-1538[R]. Washington, D.C.: NASA, 1979.
42 KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy195152(6): 119-139.
43 EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway: IEEE Press, 2002: 39-43.
Outlines

/