Fluid Mechanics and Flight Mechanics

Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet

  • Xiaofeng WANG ,
  • Feng QU ,
  • Junjie FU ,
  • Zeyu WANG ,
  • Chaoyu LIU ,
  • Junqiang BAI
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: qufeng@nwpu.edu.cn

Received date: 2022-12-05

  Revised date: 2022-12-22

  Accepted date: 2023-03-21

  Online published: 2023-04-17

Supported by

National Natural Science Foundation of China(11972308)

Abstract

Despite its relatively good inlet capture ability and high air compression efficiency, the inward turning inlet cannot be locally adjusted in the preliminary design, and improvement in the adverse effects of complex flow structures such as flow separation and secondary flow caused by shock/boundary layer interference is difficult. Therefore, performance optimization is necessary. The current design optimization of the hypersonic inward turning inlet faces many challenges such as the complex profile, large-scale design variables, and the high accuracy requirement of the flowfield numerical simulation. The gradient optimization method based on discrete adjoint is adopted to carry out the aerodynamic design optimization for the inward turning inlet with a wedge forebody. The optimization results show that the undulating shape of the inner and outer compression sections significantly changes the internal shock structure, reduces the wall pressure gradient, and thereby abates the streamwise vortex. In addition, the interference intensity between the shock train and the boundary layer in the isolation section is significantly weakened, inhibiting the expansion of the low energy flow region. Under the design condition, compared with the initial configuration, the aerodynamic performance of the optimized configuration is significantly improved. The total pressure recovery coefficient, the flow coefficient and the pressure ratio at the exit are increased by 8.767%, 0.163%, and 0.763%, respectively, while the drag is reduced by 1.658%.

Cite this article

Xiaofeng WANG , Feng QU , Junjie FU , Zeyu WANG , Chaoyu LIU , Junqiang BAI . Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 128352 -128352 . DOI: 10.7527/S1000-6893.2022.28352

References

1 王卫星, 朱婷, 张仁涛, 等. 高超声速内转式进气道型面流场重构[J]. 航空学报202041(3): 123493.
  WANG W X, ZHU T, ZHANG R T, et al. Flow field reconstruction of hypersonic inward turning inlet based on configuration[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123493 (in Chinese).
2 ZUO F Y, M?LDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences2019106: 108-144.
3 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京: 南京航空航天大学, 2014: 10-16.
  LI Y Z. Investigation of hypersonic inward turing inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 10-16 (in Chinese).
4 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展200939(5): 513-525.
  YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics200939(5): 513-525 (in Chinese).
5 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报201839(10): 122078.
  QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica201839(10): 122078 (in Chinese).
6 DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006.
7 SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power199915(3): 408-416.
8 李永洲, 张堃元, 张留欢. 抽吸对高超声速内收缩进气道涡流区及起动性能的影响[J]. 航空动力学报201631(7): 1630-1637.
  LI Y Z, ZHANG K Y, ZHANG L H. Effect of bleeding on vortex region and starting performance of hypersonic inward turning inlet[J]. Journal of Aerospace Power201631(7): 1630-1637 (in Chinese).
9 李宥晨. 高超声速进气道扫掠激波/边界层干扰流动控制研究[D]. 南京: 南京航空航天大学, 2021: 65-87.
  LI Y C. Study of the flow control on swept shock/turbulent boundary layer interaction in hypersonic inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 65-87 (in Chinese).
10 李程鸿, 谭慧俊, 孙姝, 等. 流体式高超声速可调进气道流动机理及工作特性分析[J]. 宇航学报201132(12): 2613-2621.
  LI C H, TAN H J, SUN S, et al. Flow mechanism and operating characteristics of a fluidic variable hypersonic inlet[J]. Journal of Astronautics201132(12): 2613-2621 (in Chinese).
11 张向洪, 伍贻兆, 王江峰. 基于电子束电离的磁流体力学进气道流动控制数值模拟[J]. 航空动力学报201227(6): 1375-1383.
  ZHANG X H, WU Y Z, WANG J F. Numerical simulation for magnetohydrodynamic inlets control using electron beam ionization[J]. Journal of Aerospace Power201227(6): 1375-1383 (in Chinese).
12 陈兵, 徐旭, 蔡国飙. 基于遗传算法和空间推进方法的高超声速进气道优化设计研究[J]. 宇航学报200627(5): 1010-1015.
  CHEN B, XU X, CAI G B. Optimization design of hypersonic inlets using genetic algorithm based on a parabolized Navier-Stokes flow solver[J]. Journal of Astronautics200627(5): 1010-1015 (in Chinese).
13 王昌盛, 额日其太, 丁文豪. 高超声速轴对称进气道多目标优化设计[J]. 航空动力学报202035(7): 1392-1401.
  WANG C S, ERIQITAI, DING W H. Multi-objective optimization design of hypersonic axisymmetric inlet[J]. Journal of Aerospace Power202035(7): 1392-1401 (in Chinese).
14 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报201536(12): 3759-3773.
  WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica201536(12): 3759-3773 (in Chinese).
15 高琨鹏, 陈兵, 徐旭. 基于PNS算法的高超声速内转式进气道优化设计[J]. 推进技术201738(5): 998-1007.
  GAO K P, CHEN B, XU X. Optimization design of hypersonic inward turning inlet based on SSPNS algorithm[J]. Journal of Propulsion Technology201738(5): 998-1007 (in Chinese).
16 KEANE A J, VOUTCHKOV I I. Surrogate approaches for aerodynamic section performance modeling[J]. AIAA Journal202058(1): 16-24.
17 ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal200341(4): 687-696.
18 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012: 108-115.
  NAN X J. Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 108-115 (in Chinese).
19 ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics200817(1/2): 103-126.
20 HOUCK C R, JOINES J, KAY M G. A genetic algorithm for function optimization: A Matlab implementation: NCSU-IE-TR-95-09 [R]. Raleigh: North Carolina State University, 1995.
21 SEVANT N E, BLOOR M I G, WILSON M J. Aerodynamic design of a flying wing using response surface methodology[J]. Journal of Aircraft200037(4): 562-569.
22 JAMESON A. Aerodynamic shape optimization using the adjoint method[EB/OL]. 2022-12-05. .
23 NADARAJAH S K, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization: AIAA-2000-0667[R]. Reston: AIAA, 2000.
24 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报202038(1): 21-26.
  GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica202038(1): 21-26 (in Chinese).
25 KLINE H, PALACIOS F, ECONOMON T D, et al. Adjoint-based optimization of a hypersonic inlet: AIAA- 2015-3060[R]. Reston: AIAA, 2015.
26 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报202344(4): 126664.
  LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica202344(4): 126664 (in Chinese).
27 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016: 49-69.
  CHEN S. Gradient based aerodynamic shape optimization design and application[D].Xi’an: Northwestern Polytechnical University, 2016: 49-69 (in Chinese).
28 MARTA A C, MADER C A, MARTINS J R R A, et al. A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J]. International Journal of Computational Fluid Dynamics200721(9/10): 307-327.
29 SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
30 JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal198725(7): 929-935.
31 GROPP W, KEYES D, MCINNES L C, et al. Globalized Newton-Krylov-Schwarz algorithms and software for parallel implicit CFD[J]. The International Journal of High Performance Computing Applications200014(2): 102-136.
32 KINEFUCHI K, STARIKOVSKIY A Y, MILES R B. Numerical investigation of nanosecond pulsed plasma actuators for control of shock-wave/boundary-layer separation[J]. Physics of Fluids201830(10): 106105.
33 SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1986: 151-160.
34 LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics2012231(2): 586-601.
35 GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review200547(1): 99-131.
36 PUEYO A, ZINGG D W. An efficient Newton-GMRES solver for aerodynamic computations: AIAA-1997-1955[R]. Reston: AIAA, 1997.
37 董昊, 耿玺, 程克明, 等. 高超声速内收缩进气道设计与优化[M]. 北京: 科学出版社, 2018: 37-40.
  DONG H, GENG X, CHENG K M, et al. Design and optimization of hypersonic inward turning inlet[M]. Beijing: Science Press, 2018: 37-40 (in Chinese).
38 周永易. 高超声速进气道中流向涡的生成流场及演化特性研究[D]. 长沙: 国防科技大学, 2019: 68-69.
  ZHOU Y Y. Study on generation flowfield and evolution characteristics of streamwise vortices in hypersonic inlet[D]. Changsha: National University of Defense Technology, 2019: 68-69 (in Chinese).
39 何刚, 赵玉新, 周进. 等熵侧压诱导的超声速平板边界层二次流研究[J]. 推进技术201637(9): 1624-1630.
  HE G, ZHAO Y X, ZHOU J. Investigation on secondary-flows of a supersonic flat-plate boundary layer induced by isentropic sidewall compression[J]. Journal of Propulsion Technology201637(9): 1624-1630 (in Chinese).
40 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报201031(9): 1733-1739.
  ZHANG H, TAN H J, SUN S. Characteristics of shock-train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica201031(9): 1733-1739 (in Chinese).
41 丁猛, 李桦, 范晓樯. 等截面隔离段中激波串结构的数值模拟[J]. 国防科技大学学报200123(1): 15-18.
  DING M, LI H, FAN X Q. Numerical simulation of shock train in a constant area isolator[J]. Journal of National University of Defense Technology200123(1): 15-18 (in Chinese).
Outlines

/