ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic optimization design of high and low speed integration for flying wing layout
Received date: 2023-07-26
Revised date: 2023-08-21
Accepted date: 2023-10-12
Online published: 2023-10-24
Supported by
National Key Research and Development Program(2023YFB3002800);Foundation of National Key Laboratory of Aircraft Configuration Design(2023-JCJQ-LB-070)
The flying wing layout is the most promising aerodynamic layout for future aircraft because of its advantages in aerodynamics, stealth and structure. A large number of design analyses conducted in academia for flying wings reveal that the low-speed takeoff/landing performance and controllability are the main difficulties in the performance and safety of the flying wing layout. For the flying wing layout UAVs and combat aircraft, the low-speed performance and controllability are further deteriorated due to the influence of the stealthy design. Previous research has mainly focused on the design of high-speed cruising, while little research on low-speed design can be found. This paper examines the high and low speed integrated design of a flying wing layout UAV based on the high-performance discrete adjoint optimization design platform. First, the effects of different low-speed design models on the low-speed characteristics of the aircraft were compared. Then, a high and low integrated design model was established, comprehensively improving the high and low speed performance of the aircraft. Finally, the results were analyzed, and the main points and rules of the high and low-speed integrated design were summarized, providing a powerful and effective method for the aerodynamic design of the flying wing layout.
Ke ZHAO , Jun DENG , Jiangtao HUANG , Shusheng CHEN , Zhenghong GAO . Aerodynamic optimization design of high and low speed integration for flying wing layout[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 129367 -129367 . DOI: 10.7527/S1000-6893.2023.29367
1 | 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1): 13-19, 26. |
CHE J, HE K F, QIAN W Q. Key technique and aerodynamic configuration characteristic of UCAV with command of the air[J]. Acta Aerodynamica Sinica, 2017, 35(1): 13-19, 26 (in Chinese). | |
2 | LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. |
3 | MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations[C]∥20th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2002: 2931. |
4 | QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6): 321-343. |
5 | LI Y H, QIN N. Influence of spanwise load distribution on blended-wing-body performance at transonic speed[J]. Journal of Aircraft, 2020, 57(3): 408-417. |
6 | HEMA A, SEGONDS S, CHRISTIAN B. Surrogate model development for optimized blended-wing-body aerodynamics[J]. Journal of Aircraft, 2023, 60(2): 437-448. |
7 | ZADEH P M, SAYADI M. An efficient aerodynamic shape optimization of blended wing body UAV using multi-fidelity models[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1165-1180. |
8 | 马超, 王立新. 飞翼布局作战飞机起降特性分析[J]. 北京航空航天大学学报, 2009, 35(4): 429-433. |
MA C, WANG L X. Take-off and landing features of flying-wing configuration fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 429-433 (in Chinese). | |
9 | 余永刚, 黄勇, 周铸, 等. 飞翼布局气动外形设计[J]. 空气动力学学报, 2017, 35(6): 832-836, 878. |
YU Y G, HUANG Y, ZHOU Z, et al. Aerodynamic design of a flying-wing aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6): 832-836, 878 (in Chinese). | |
10 | 刘晓冬, 张沛良, 何光洪, 等. 基于伴随方法的飞翼布局多目标气动优化设计[J]. 西北工业大学学报, 2021, 39(4): 753-760. |
LIU X D, ZHANG P L, HE G H, et al. Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 753-760 (in Chinese). | |
11 | 甘文彪, 周洲, 许晓平. 基于准则的大展弦比飞翼气动设计[J]. 北京航空航天大学学报, 2015, 41(9): 1608-1614. |
GAN W B, ZHOU Z, XU X P. Aerodynamic design of high-aspect-ratio flying wing based on criteria[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1608-1614 (in Chinese). | |
12 | SHI Y Y, LAN Q S, LAN X Y, et al. Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach[J]. Structural and Multidisciplinary Optimization, 2023, 66(5): 110. |
13 | DIMOPOULOS T, PALIAIKOS D, CHRISTOUETAL V. Experimental and computational investigation of the vortical Structures generated from a blended-wing-body UAV model[J]. Aerospace Science and Technology, 2023, 139: 108377. |
14 | CUMMINGS R M, LIERSCH C M, SCHüTTE A, et al. Aerodynamics and conceptual design studies on an unmanned combat aerial vehicle configuration[J]. Journal of Aircraft, 2016, 55(2): 454-474. |
15 | CUMMINGS R M. Introduction to special section—Computational and experimental aerodynamics and stability & control for an agile UAV[J]. Journal of Aircraft, 2018, 55(2): 453. |
16 | CUMMINGS R M. Introduction: SACCON unihabited combat aerial vehicle experimental and numerical simulations[J]. Journal of Aircraft, 2012, 49(6): 1541. |
17 | PETTERSON K. CFD analysis of the low-speed aerodynamic characteristics of a UCAV[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1259. |
18 | VICROY D D. Blended-wing-body low-speed flight dynamics: summary of ground tests and sample results (invited)[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 933. |
19 | GATLIN G M, VICROY D D, CARTER M B. Experimental investigation of the low-speed aerodynamic characteristics of a 5.8-percent scale hybrid wing body configuration[C]∥30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012: 2669. |
20 | VICROY D D, DICKEY E D, PRINCEN N, et al. Overview of low-speed aerodynamic tests on a 5.75% scale blended-wing-body twin jet configuration (invited)[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: AIAA2016-0009. |
21 | PANAGIOTOU P, YAKINTHOS K. Parametric aerodynamic study of Blended-Wing-Body platforms at low subsonic speeds for UAV applications[C]∥35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3737. |
22 | ARTHUR M, PETTERSON K. A computational study of the low-speed flow over the 1303 UCAV configuration[C]∥25th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2007: 4568. |
23 | SCHüTTE A, VORMWEG J, MAYE R G, et al. Aerodynamic shaping design and vortical flow design aspects of a 53deg swept flying wing configuration[C]∥ 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018: 2841. |
24 | 单继祥, 黄勇, 张旭. 头部厚度分布对飞翼布局失速特性影响研究[J]. 中国科学: 技术科学, 2017, 47(9): 985-991. |
SHAN J X, HUANG Y, ZHANG X. Effect of nose thickness distribution on the stall characteristics of low aspect ratio flying wing configuration at transonic flow[J]. Scientia Sinica (Technologica), 2017, 47(9): 985-991 (in Chinese). | |
25 | TAO Y, LI Y H, ZHANG Z, et al. Transonic wing stall of a blended flying wing common research model based on DDES method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1506-1516. |
26 | 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性[J]. 航空学报, 2023, 44(4): 126449. |
WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126449 (in Chinese). | |
27 | 邵帅, 郭正, 贾高伟, 等. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 54-64. |
SHAO S, GUO Z, JIA G W, et al. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 54-64 (in Chinese). | |
28 | 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353. |
FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527353 (in Chinese). | |
29 | 陈宪, 陈诚, 黄江涛, 等. 腹部襟翼对飞翼布局飞行器起降气动特性的影响[J]. 航空学报, 2022, 43(3): 125028. |
CHEN X, CHEN C, HUANG J T, et al. Effects of belly flap on take-off and landing characteristics of a flying-wing vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125028 (in Chinese). | |
30 | MARTINS J R R A. Aerodynamic design optimization: Challenges and perspectives[J]. Computers & Fluids, 2022, 239: 105391. |
31 | 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404. |
HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). | |
32 | 黄江涛, 周琳, 陈宪, 等. 基于NS/CFIE伴随方程的飞行器气动隐身综合优化[J]. 航空学报, 2023, 44(12): 127757. |
HUANG J T, ZHOU L, CHEN X, et al. Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127757 (in Chinese). | |
33 | 邓俊, 高正红, 黄江涛, 等. 基于迎风格式伴随方程的飞行器边界特性设计方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2022.0964 . |
DENG J, GAO Z H, HUANG J T, et al. Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2022.0964 (in Chinese). | |
34 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th annual conference on Computer graphics and interactive techniques. New York: ACM, 1986: 151-160. |
35 | LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. |
36 | SAMAREH J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884. |
37 | SMITH R E. Transfinite interpolation (TFI) generation systems[M]∥WEATHERILL N P, THOMPSON J F, SONI B K. Handbook of Grid Generation. Boca Raton: CRC Press, 1999. |
38 | BOER A D, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11-14): 784-795. |
39 | 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. |
ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422 (in Chinese). | |
40 | 牟斌. 流动控制数值模拟研究[D].绵阳:中国空气动力研究与发展中心, 2006. |
MOU B. Numerical simulation and investigation of flow control[D]. Mianyang: China Aerodynamic Research and Development Center, 2006 (in Chinese). | |
41 | 陈宪, 陈诚, 黄江涛, 等. 飞翼布局飞行器可伸缩腹部襟翼气动分析[J]. 航空工程进展, 2022, 13(2): 9-17. |
CHEN X, CHEN C, HUANG J T, et al. Aerodynamic analysis of retractable belly flap for a flying wing aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(2): 9-17 (in Chinese). | |
42 | WHITTENBURY J. Configuration design development of the navy UCAS-D X-47B[C]∥AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”. Reston: AIAA, 2011: 7041. |
/
〈 |
|
〉 |