ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Multibody system unsteady simulation technology for morphing aircraft
Received date: 2023-06-25
Revised date: 2023-08-09
Accepted date: 2023-09-18
Online published: 2023-09-27
Supported by
National Key Research and Development Program of China(2019YFB1704204)
Morphing aircraft can adjust their shape to suit different flight environments and missions, which gives them significant advantages in terms of aerodynamics, control, and application scenarios. To design a feasible morphing aircraft separation/deformation mechanism, simulation tools are essential for identifying design risks and optimizing mechanism design. Aiming at the simulation requirements of various multibody system unsteady problems of morphing aircraft, a lightweight multibody dynamics open source simulation software MUSE was developed based on the Udwadia-Kalaba method. MUSE adopts an object-oriented programming method, which allows users to create corresponding rigid body objects and constraint objects according to the actual mechanical system without requiring users to understand the specific expressions of the multibody dynamics equations. A coupling calculation framework between MUSE and CFD solver was established in the present paper, which achieved the multibody system unsteady simulation of morphing aircraft separation/deformation process. The verification examples demonstrated that MUSE can accurately solve multibody dynamics problems, and the coupling calculation between MUSE and CFD can effectively overcome the multibody system unsteady simulation challenges faced by various morphing aircraft separation/deformation processes.
Key words: morphing aircraft; unsteady; multibody dynamics; separation; coupling calculation
He ZHANG , Qingyang LIU , Liugang LI , Jingyao XU . Multibody system unsteady simulation technology for morphing aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729421 -729421 . DOI: 10.7527/S1000-6893.2023.29421
1 | 陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报, 2009, 30(10): 1906-1911. |
LU Y P, HE Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1906-1911 (in Chinese). | |
2 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
3 | BARARINAO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. |
4 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
5 | PONS A, CIRAK F. Multi-axis nose-pointing-and-shooting in a biomimetic morphing-wing Aircraft[J]. Journal of Guidance, Control, and Dynamics, 2023, 46(3): 499-517. |
6 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
7 | YAN B B, DAI P, LIU R F, et al. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft[J]. Aerospace Science and Technology, 2019, 92: 198-210. |
8 | SNYDER M P, SANDERS B, EASTEP F E, et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft, 2009, 46(3): 791-799. |
9 | SMITH S B, NELSON D W. Determination of the aerodynamic characteristics of the mission adaptive wing[J]. Journal of Aircraft, 1990, 27(11): 950-958. |
10 | CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)[C]∥17th AIAA Aviation Technology, Integration, and Operations Conference. 2017: 4273. |
11 | 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071. |
ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071 (in Chinese). | |
12 | 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2): 724274. |
LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724274 (in Chinese). | |
13 | 王晨, 杨洋, 沈星, 等. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报, 2022, 43(6): 526146. |
WANG C, YANG Y, SHEN X, et al. An equivalent strength model of corrugated panel and optimization design for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese). | |
14 | 于惠勇, 李华峰, 曾捷, 等. 可变弯度机翼后缘形态重构光纤监测技术[J]. 航空学报, 2020, 41(10): 223808. |
YU H Y, LI H F, ZENG J, et al. Monitoring technique for shape reconstruction of variable camber trailing edge based on optical fiber sensors[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 223808 (in Chinese). | |
15 | 尹维龙, 石庆华, 田东奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8): 1824-1831. |
YIN W L, SHI Q H, TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing-edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1824-1831 (in Chinese). | |
16 | SAHU J, GRUENWALD B C, BURCHETT B T. Adaptive control validation using a MATLAB-based CFD/RBD coupled simulation[C]∥AIAA SCITECH 2023 Forum. 2023: 1171. |
17 | ERNST Z, DROSENDAHL M, ROBERTSON B E, et al. Development of a trajectory-centric CFD-RBD framework for advanced multidisciplinary/multiphysics simulation[C]∥ AIAA SCITECH 2022 Forum. 2022: 1793. |
18 | KAKIMAP B, HARGREAVES D M, OWEN J S. An investigation of plate-type windborne debris flight using coupled CFD-RBD models. Part I: model development and validation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 111: 95-103. |
19 | SAINI D, SHAFEI B. Flight characteristics of rod-shaped windborne debris objects in atmospheric boundary layer winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105073. |
20 | 黄阳阳, 姜毅, 李玉龙, 等. 子母弹结构特征对分离特性影响分析[J]. 现代防御技术, 2021, 49(2): 35-42. |
HUANG Y Y, JIANG Y, LI Y L, et al. Impact analysis of structure characteristics of cluster bombs on separation characteristics[J]. Modern Defense Technology, 2021, 49(2): 35-42 (in Chinese). | |
21 | 王巍, 刘君, 刘冰, 等. 火箭助推器从芯级飞行器动态分离过程的数值模拟[J]. 宇航学报, 2006, 27(4): 766-770. |
WANG W, LIU J, LIU B, et al. Numerical simulation the process of the rocket booster separating form spaceship[J]. Journal of Astronautics, 2006, 27(4): 766-770 (in Chinese). | |
22 | UDWADIA F E, KALABA R E. Analytical dynamics: a new approach[M]. Cambridge: Cambridge University Press, 1996: 84-85. |
23 | UDWADIA F E, PHAILAUNG P. Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics[J]. Proceedings of the Royal Society A, 2006, 462: 2097-2117. |
24 | 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447. |
ZHANG L P, DENG X G, ZHANG H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4): 424-447 (in Chinese). |
/
〈 |
|
〉 |