Articles

Effects of thermal nonequilibrium on hydrocarbon⁃fueled scramjets

  • You WU ,
  • Bing CHEN ,
  • Qingchun YANG ,
  • Xu XU
Expand
  • School of Astronautics,Beihang University,Beijing 102206,China
E-mail: xuxu@buaa.edu.cn

Received date: 2023-08-01

  Revised date: 2023-08-07

  Accepted date: 2023-09-05

  Online published: 2023-09-21

Supported by

Project of Science and Technology on Scramjet Laboratory(WDZC6142703202201)

Abstract

Hypersonic flow is generally accompanied by the thermochemical non-equilibrium effect, which brings a series of effects on the flow and combustion in hypersonic propulsion systems. This paper gives a numerical investigation of the effects of thermal nonequilibrium on flow, combustion and engine performance by simulating the kerosene-fueled scramjet at the free-stream conditions of Mach number 10 and 29 km. The thermochemical nonequilibrium and thermal equilibrium models are employed in this study. The results show that the thermal non-equilibrium effect can change the flow field structure and mixing efficiency in the engine by increasing the angle of oblique shock wave. The equilibrium temperature at the front of the combustion chamber is higher in the thermal non-equilibrium state, which can promote the combustion upstream of the cavity. However, the effect of thermal non-equilibrium reduces the peak heat release rate and combustion efficiency downstream of the cavity. The vibrational non-equilibrium in the nozzle can affect the thrust. In general, thermal non-equilibrium effects can reduce the performance of kerosene-fueled scramjet at Mach number 10.

Cite this article

You WU , Bing CHEN , Qingchun YANG , Xu XU . Effects of thermal nonequilibrium on hydrocarbon⁃fueled scramjets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529399 -529399 . DOI: 10.7527/S1000-6893.2023.29399

References

1 URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics201850: 593-627.
2 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报202254(2): 263-288.
  YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-Mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 263-288 (in Chinese).
3 GIORDANO D. Impact of the Born-Oppenheimer approximation on aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer200721(3): 647-657.
4 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 20-22.
  LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D].Mianyang: China Aerodynamics Research and Development Center, 2007: 20-22 (in Chinese).
5 NAGNIBEDA E, KUSTOVA E. Non-equilibrium reacting gas flows: Kinetic theory of transport and relaxation processes[M]. Berlin, Heidelberg: Springer, 2009.
6 SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences201572: 3-16.
7 FIéVET R, RAMAN V. Effect of vibrational nonequilibrium on isolator shock structure[J]. Journal of Propulsion and Power201834(5): 1334-1344.
8 DAI C L, SUN B, ZHOU C S, et al. Numerical investigation of real-gas effect of inward-turning inlet at Mach 12[J]. Aerospace Science and Technology2021115: 106786.
9 韩亦宇, 张若凌, 邢建文, 等. 热力学非平衡对超燃冲压发动机冷态流动影响研究[J]. 推进技术202243(7): 210262.
  HAN Y Y, ZHANG R L, XING J W, et al. Effects of thermal nonequilibrium on cold flow in scramjets[J]. Journal of Propulsion Technology202243(7): 210262 (in Chinese).
10 KOO H, RAMAN V, VARGHESE P L. Direct numerical simulation of supersonic combustion with thermal nonequilibrium[J]. Proceedings of the Combustion Institute201535(2): 2145-2153.
11 FIéVET R, VOELKEL S, KOO H, et al. Effect of thermal nonequilibrium on ignition in scramjet combustors[J]. Proceedings of the Combustion Institute201736(2): 2901-2910.
12 AO Y, WU K, LU H B, et al. Combustion dynamics of high Mach number scramjet under different inflow thermal nonequilibrium conditions[J]. Acta Astronautica2023208: 281-295.
13 YAO W. Nonequilibrium effects in hypersonic combustion modeling[J]. Journal of Propulsion and Power202238(4): 523-540.
14 YAO W, LIU H, ZHANG Z, et al. Effects of thermal/chemical nonequilibrium on a high-Mach ethylene-fueled scramjet[J]. Journal of Propulsion and Power202339(4): 562-579.
15 ZIDANE A, HAOUI R, SELLAM M, et al. Numerical study of a nonequilibrium H2—O2 rocket nozzle flow[J]. International Journal of Hydrogen Energy201944(8): 4361-4373.
16 LEE J H. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles[C]∥ 19th Thermophysics Conference. Reston: AIAA, 1984: 1729.
17 SKREBKOV O V. Vibrational non-equilibrium in the hydrogen-oxygen reaction. Comparison with experiment[J]. Combustion Theory and Modelling201519(2): 131-158.
18 MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation[J]. The Journal of Chemical Physics196339(12): 3209-3213.
19 HALL J G. Fundamental phenomena in hypersonic flow[M]. Ithaca: Cornell University Press, 1966.
20 CANDLER G. Computation of thermo-chemical nonequilibrium Martian atmospheric entry flows[C]∥ 5th Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 1990: 1695.
21 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
22 WESTBROOK C K, DRYER F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology198127(1-2): 31-43.
23 KNAB O, FRUEHAUF H H, MESSERSCHMID E W. Theory and validation of the physically consistent coupled vibration-chemistry-vibration model[J]. Journal of Thermophysics and Heat Transfer19959(2): 219-226.
24 VOELKEL S, RAMAN V, VARGHESE P L. Effect of thermal nonequilibrium on reactions in hydrogen combustion[J]. Shock Waves201626(5): 539-549.
25 WU Y, XU X, CHEN B, et al. Theoretical and numerical study of the binary scaling law for electron distribution in thermochemical non-equilibrium flows under extremely high Mach number[J]. Journal of Fluid Mechanics2022940: A3.
26 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报202142(S1): 726359.
  WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 726359 (in Chinese).
27 KIM S D, LEE B J, LEE H J, et al. Robust HLLC riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics2009228(20): 7634-7642.
28 PARK J S, YOON S H, KIM C. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics2010229(3): 788-812.
29 VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 880.
30 BLAZEK J. Computational fluid dynamics: Principles and applications[M]. 3rd ed. Oxford: Butterworth Heinemann, 2015.
31 LEHR H F.Experiments on shock-induced combustion[J].Astronautica Acta197217(4):589-597.
32 DU P, XUE R, WU Y K, et al. Study on the flow field of a kerosene-fueled integrated inlet-combustor-nozzle oblique detonation engine[J]. Physics of Fluids202335(6): 066127.
33 WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology202098: 105594.
34 KUMARAN K, BEHERA P R, BABU V. Numerical investigation of the supersonic combustion of kerosene in a strut-based combustor[J]. Journal of Propulsion and Power201026(5): 1084-1091.
Outlines

/