Electronics and Electrical Engineering and Control

Optimization of occultation observation configuration based on precise repeat ground-track resonant orbit

  • Yining ZHANG ,
  • Changxuan WEN ,
  • Bo PANG ,
  • Tianhao ZHU ,
  • Jiaxin HE ,
  • Zihan JIN
Expand
  • College of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China

Received date: 2023-06-12

  Revised date: 2023-07-26

  Accepted date: 2023-09-12

  Online published: 2023-09-21

Supported by

National Natural Science Foundation of China(12172043)

Abstract

The occultation observation technology is widely used to monitor the concentration of greenhouse gases in the atmosphere. Different from traditional optical observation, occultation observation requires the cooperation of a “source satellite” and an “observation satellite” to meet strict geometric constraints. This makes the orbit design of occultation observation satellites challenging. To improve the coverage of occultation observation satellites, this paper proposes an occultation observation configuration optimization method for occultation satellites based on precise repeat ground-track resonant orbit. First, the geometric constraints of occultation observations are translated from tangent height constraints to geocentric angle constraints, enabling a rapid assessment of continuous occultation observation arcs and coverage capabilities for any orbital configuration. Then, by utilizing the orbital characteristics of regression orbits and resonant orbits, a large-scale “source satellite - observation satellite” orbital configuration library is established, providing a foundational set of solutions for the design of occultation observation orbits. Finally, the orbital design of the source satellite and observation satellite is optimized, with the coverage capability of major carbon emission regions serving as the primary performance metric, and high-precision regression resonant observation configurations under J2 perturbations are constructed using differential corrections.Results indicate that the designed occultation observation configuration not only ensures long duration of occultation observation during a single resonant period, but also achieves long-term maintenance of observation geometry and periodic stable observation. This method was successfully applied to the “Carbon Satellite Atmospheric Observation Orbit Design and Optimization” of the 8th China Graduate Future Flight Vehicle Innovation Competition and won the championship of the contest.

Cite this article

Yining ZHANG , Changxuan WEN , Bo PANG , Tianhao ZHU , Jiaxin HE , Zihan JIN . Optimization of occultation observation configuration based on precise repeat ground-track resonant orbit[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(8) : 329151 -329151 . DOI: 10.7527/S1000-6893.2023.29151

References

1 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版)202121(3): 1-15.
  HU A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition)202121(3): 1-15 (in Chinese).
2 陈良富, 张莹, 邹铭敏, 等. 大气CO2浓度卫星遥感进展[J]. 遥感学报201519(1): 1-11.
  CHEN L F, ZHANG Y, ZOU M M, et al. Overview of atmospheric CO2 remote sensing from space[J]. Journal of Remote Sensing201519(1): 1-11 (in Chinese).
3 刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感: 进展与趋势[J]. 遥感学报202125(1): 53-64.
  LIU Y, WANG J, CHE K, et al. Satellite remote sensing of greenhouse gases: Progress and trends[J]. National Remote Sensing Bulletin202125(1): 53-64 (in Chinese).
4 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报20131(1): 3-8.
  NING J S, YAO Y B, ZHANG X H. Review of the development of global satellite navigation system[J]. Journal of Navigation and Positioning20131(1): 3-8 (in Chinese).
5 王也英, 符养, 杜晓勇, 等. 全球GNSS掩星计划进展[J]. 气象科技200937(1): 74-78.
  WANG Y Y, FU Y, DU X Y, et al. Advances in global GNSS occultation projects[J]. Meteorological Science and Technology200937(1): 74-78 (in Chinese).
6 HAJJ G A, KURSINSKI E R, BERTIGER W I, et al. Initial results of GPS-LEO occultation measurements of earth’s atmosphere obtained with the GPS-MET experiment[C]∥BEUTLER G, MELBOURNE WG, HEIN GW, et al. GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications. Berlin, Heidelberg: Springer, 1996: 144-153.
7 丁金才, 郭英华, 郭永润, 等. 利用COSMIC资料对17个台风热力结构的合成分析[J]. 热带气象学报201127(1): 31-43.
  DING J C, GUO Y H, GUO Y R, et al. The composite analysis of the thermal structure of 17 typhoons by using cosmic data[J]. Journal of Tropical Meteorology201127(1): 31-43 (in Chinese).
8 莫平华, 欧明, 张风国. GNSS/LEO无线电掩星电离层探测仿真研究[J]. 全球定位系统201540(3): 6-10.
  MO P H, OU M, ZHANG F G. Simulation of GNSS/LEO based ionospheric radio occultation monitoring[J]. GNSS World of China201540(3): 6-10 (in Chinese).
9 FONG C J, YEN N L, CHU V, et al. Space-based global weather monitoring system: FORMOSAT-3/COSMIC constellation and its follow-on mission[J]. Journal of Spacecraft and Rockets200946(4): 883-891.
10 SCHREINER W S, WEISS J P, ANTHES R A, et al. COSMIC-2 radio occultation constellation: First results[J]. Geophysical Research Letters202047(4): e86841.
11 王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测[J]. 物理学报201564(8): 408-415.
  WANG S Z, ZHU G W, BAI W H, et al. For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation[J]. Acta Physica Sinica201564(8): 408-415 (in Chinese).
12 吴春俊, 孙越强, 王先毅, 等. 风云三号D星天基BDS实时定位性能分析[J]. 武汉大学学报(信息科学版): 202348(2): 248-259.
  WU C J, SUN Y Q, WANG X Y, et al. Assessment of position performance of BDS for space application based on FY-3D satellite[J]. Geomatics and Information Science of Wuhan University202348(2): 248-259 (in Chinese).
13 LUO X, WANG M C, DAI G M, et al. Constellation design for earth observation based on the characteristics of the satellite ground track[J]. Advances in Space Research201759(7): 1740-1750.
14 ORTORE E, CINELLI M, CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology201769: 458-464.
15 IMOTO Y, SATOH S, OBATA T, et al. Optimal constellation design based on satellite ground tracks for Earth observation missions[J]. Acta Astronautica2023207: 1-9.
16 JUANG J C, TSAI Y F, CHU C H. On constellation design of multi-GNSS radio occultation mission[J]. Acta Astronautica201382(1): 88-94.
17 XU X H, HAN Y, LUO J, et al. Seeking optimal GNSS radio occultation constellations using evolutionary algorithms[J]. Remote Sensing201911(5): 571.
18 “航天三江杯”第八届中国研究生未来飞行器创新大赛挑战赛道-碳卫星大气观测轨道设计与优化赛题公布[EB/OL]. (2022-10-20)[2023-06-07]. .
  The 8th China graduate future aircraft innovation competition of “Aerospace Sanjiang Cup” Challeng-e track-carbon satellite atmospheric observation orbit design and optimization competition was an-nounced[EB/OL]. (2022-10-20)[2023-06-07]. (in Chinese).
19 刘俊丽, 高扬. 十年一剑刃锋利,苦寒方得梅花香: 全国空间轨道设计竞赛发展历程回顾[J]. 力学与实践201941(4): 488-497.
  LIU J L, GAO Y. With ten years’ effort the sword edge is grinded sharp, after the cold winter plum flower blossoms—a review of China trajectory optimization competition[J]. Mechanics in Engineering201941(4): 488-497 (in Chinese).
20 IZZO D, HENNES D, M?RTENS M, et al. GTOC8: Results and methods of ESA advanced concepts team and JAXA-ISAS[DB/OL]. arXiv preprint: 1602.00849, 2016.
21 马剑, 孟雅哲, 朱小龙, 等. 特定区域密集观测的低轨卫星星座最优设计方法[J]. 中国科学: 技术科学201848(2): 170-184.
  MA J, MENG Y Z, ZHU X L, et al. Optimal design of low-earth-orbit satellite constellation for regional fast revisit[J]. Scientia Sinica (Technologica)201848(2): 170-184 (in Chinese).
22 ZHANG C, JIN J, ZHANG J R, et al. Problem B of 9th China trajectory optimization competition: Problem description and summary of the results[J]. Acta Astronautica2018150: 223-230.
23 ONG, X, IN, et al. GTOC9: results from the Xi’an satellite control center (team XSCC) [J]. Acta Futura201811(1): 49-55.
24 RIDER L. Optimized polar orbit constellations for redundant earth coverage[J]. Journal of the Astronautical Sciences198533: 147-161.
25 马原野. 近地全球重访星座轨道快速优化设计研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019: 3-5.
  MA Y Y. Research on rapid optimization design of global revisit constellation in low earth orbit[D].Beijing: National Space Science Center, Chinese Academy of Sciences, 2019: 3-5 (in Chinese).
Outlines

/