Near Space Technology

On⁃board intelligent target detection technology based on domestic commercial components

  • Liqun CHEN ,
  • Xu ZOU ,
  • Lei ZHANG ,
  • Yingpan ZHU ,
  • Gang WANG ,
  • Jinyong CHEN
Expand
  • 1.School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China
    2.The Chinese People’ Liberation Army 63921 Unit,Beijing 100094,China
    3.Key Laboratory of Aerospace Information Application Technology,China Electronics Technology Group Corporation,Shijiazhuang 050080,China
E-mail: zoux@hust.edu.cn

Received date: 2023-04-12

  Revised date: 2023-08-11

  Accepted date: 2023-09-05

  Online published: 2023-09-21

Supported by

National Key Laboratory Foundation of China(6142113200307);Open Fund Project of China Electronics Technology Corporation Aerospace Information Application Technology Key Laboratory(SXX18629T022)

Abstract

To address the problems of limited size and power consumption of the on-board computing platform, the hardware architecture of “FPGA+AI processor” is proposed, and the on-board image processing platform centering on the domestic commercial devices Fudan Micro JFM7K325T FPGA and Huawei Ascend310 AI processor is designed. Intelligent computing platform. To overcome the problem of high computational and storage costs for deep network algorithms, a ship target detection algorithm based on the lightweight remote sensing image is proposed, which effectively reduces the amount of computation and parameters while ensuring the detection accuracy. To solve the problem of slow computing in real-time deployment of neural network algorithms, we carry out quantization-aware training, calculation graph optimization of operator fusion, and multi-threaded parallel software design, which effectively improves real-time computing performance. The experimental results show that the power consumption of the system is less than 15 W, the detection accuracy of ships in remote sensing images reaches 0.908, the frame rate of 1 152×1 152 remote sensing image processing reaches 63.3 frames/s, and the frame rate of 4 096×5 120 large-format image processing reaches 3.17 frames/s. This paper realizes the real-time deployment of the deep learning algorithm of the domestically produced intelligent target detection platform, and explores the realization of an autonomous and controllable intelligent spaceborne front-end system.

Cite this article

Liqun CHEN , Xu ZOU , Lei ZHANG , Yingpan ZHU , Gang WANG , Jinyong CHEN . On⁃board intelligent target detection technology based on domestic commercial components[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 728860 -728860 . DOI: 10.7527/S1000-6893.2023.28860

References

1 彭宇, 孙树志, 姚博文, 等. 微小卫星星载综合电子系统技术综述[J]. 电子测量与仪器学报202135(8): 1-11.
  PENG Y, SUN S Z, YAO B W, et al. Summary of the technology of integrated electronic system on board microsatellite[J]. Journal of Electronic Measurement and Instrumentation202135(8): 1-11 (in Chinese).
2 林来兴. 微小卫星技术发展和应用前景[J]. 国际太空2019(6): 46-48.
  LIN L X. Development and application prospect of microsatellite technology[J]. Space International2019(6): 46-48 (in Chinese).
3 周钰哲. 微小卫星特性与应用发展概述[J]. 数字通信世界2018(12): 26-27.
  ZHOU Y Z. Overview of microsatellite characteristics and application development[J]. Digital Communication World2018(12): 26-27 (in Chinese).
4 胡伟. 智能化遥感微小卫星星座应用关键技术研究[C]∥第七届高分辨率对地观测学术年会, 2020: 545-551.
  HU W. Research on Key Technologies of Remote Sensing Microsatellite Constellation Application[C]∥ China High Resolution Earth Observation Conference, 2020: 545-551
5 一景. 更智能的卫星: ESA发现项目(ESA Discovery)加速太空中的人工智能[J]. 中国测绘2022(6): 78-79.
  YI J. ESA-smarter satellites: ESA discovery accelerates AI in space[J]. China Surveying and Mapping2022(6): 78-79 (in Chinese).
6 张佳星. “天智二号”D星升空 我国卫星“智能化”加速[N]. 科技日报, 2023-01-16(2).
  ZHANG J X. Acceleration of “Intelligence” of China’s satellite during the launch of “Tianzhi 2” D-satellite[N]. Science and Technology Daily, 2023-01-16(2)
7 赖积保, 康旭东, 鲁续坤, 等. 新一代人工智能驱动的陆地观测卫星遥感应用技术综述[J]. 遥感学报202226(8): 1530-1546.
  LAI J B, KANG X D, LU X K, et al. A review of land observation satellite remote sensing application technology with new generation artificial intelligence[J]. National Remote Sensing Bulletin202226(8): 1530-1546 (in Chinese).
8 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
9 LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥ European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
10 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
11 REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6517-6525.
12 REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint1804.02767, 2018.
13 BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint2004.10934, 2020.
14 LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[C]∥ European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
15 TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 9626-9635.
16 SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
17 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
18 HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[DB/OL]. arXiv preprint: 1704.04861, 2017.
19 LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
20 LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
21 LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
22 REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 658-666.
Outlines

/