Special Topic: Fully Actuated System Theory and Its Applications in Aerospace Field

Robust control of underactuated 3-DOF helicopter based on lower order disturbance estimator

  • Zixiao YANG ,
  • Shiyao LI ,
  • Chen WEI ,
  • Zhan LI ,
  • Bo ZHU
Expand
  • 1.School of Aeronautics and Astronautics,Sun Yat-Sen University,Shenzhen 518107,China
    2.School of Astronautics,Harbin Institute of Technology,Harbin 150001,China

Received date: 2023-05-29

  Revised date: 2023-06-21

  Accepted date: 2023-08-30

  Online published: 2023-09-13

Supported by

National Natural Science Foundation of China(62373386)

Abstract

An active disturbance rejection control strategy based on Uncertainty and Disturbance Estimator (UDE) is designed, analyzed, and validated for underactuated 3-Degree-of-Freedom (3-DOF) helicopter affected by significant model uncertainties and external disturbances. In detail, an attitude trajectory tracking strategy of the elevation and travel angles is developed using feedback linearization based on the idea of full-drive theory for the helicopter experimental setup, which exhibits severe dynamic coupling and obvious underactuated characteristics, while the stabilization of the internal state (pitch angle) is guaranteed. Then, the first-order UDE is further proposed and combined with nominal control law to construct a robust control scheme for the design of the virtual control algorithm of the three channels with inner-outer loop structure, which can effectively compensate for uncertainty and external disturbance of the helicopter. The control scheme addresses the underactuated characteristics of the plant with continuous and smooth control signals, while the disturbance compensator has fewer parameters and the adjustment of system performance is concise and clear. Based on the singular perturbation theory, the convergence of tracking error, the input-state stability of the closed-loop system, and the influence of UDE parameters on the ultimate bound of tracking error are analyzed. In addition, the potential multiple time scale attributes of the system are revealed. The necessity of disturbance compensation, the effectiveness of UDE, and the convenience of control parameters adjustment are verified by both simulation and experimental results.

Cite this article

Zixiao YANG , Shiyao LI , Chen WEI , Zhan LI , Bo ZHU . Robust control of underactuated 3-DOF helicopter based on lower order disturbance estimator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(1) : 629056 -629056 . DOI: 10.7527/S1000-6893.2023.29056

References

1 孙宁, 方勇纯. 一类欠驱动系统的控制方法综述[J]. 智能系统学报20116(3): 200-207.
  SUN N, FANG Y C. A review for the control of a class of underactuated systems[J]. CAAI Transactions on Intelligent Systems20116(3): 200-207 (in Chinese).
2 PARK M S, CHWA D, HONG S K. Semi-global stabilization of a class of underactuated euler-lagrange systems by backstepping approach[C]∥ 2006 SICE-ICASE International Joint Conference. Piscataway: IEEE Press, 2007: 811-815.
3 WANG W, YI J, ZHAO D, et al. Design of a stable sliding-mode controller for a class of second-order underactuated systems[J]. IEEE Proceedings-Control Theory and Applications2004151(6): 683-690.
4 JIANG Z P. Global tracking control of underactuated ships by Lyapunov’s direct method[J]. Automatica200238(2): 301-309.
5 FANG Y, DIXON W E, DAWSON D M, et al. Nonlinear coupling control laws for an underactuated overhead crane system[J]. IEEE/ASME Transactions on Mechatronics20038(3): 418-423.
6 DUAN G R. High-order fully actuated system approaches: Part Ⅲ. Robust control and high-order backstepping[J]. International Journal of Systems Science202152(5): 952-971.
7 DUAN G R. High-order fully-actuated system approaches: Part Ⅵ. disturbance attenuation and decoupling[J]. International Journal of Systems Science202152(10): 2161-2181.
8 ISHUTKINA M A. Design and implementation of a supervisory safety controller for a 3DOF helicopter[D]. Cambridge: Massachusetts Institute of Technology, 2004.
9 ZHU B, ZHANG Q R, LIU H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control201828(17): 5437-5463.
10 LIU H, LU G, ZHONG Y S. Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers[J]. IEEE Transactions on Industrial Electronics201360(10): 4627-4636.
11 LI C A, YANG X B, XIAO B. Adaptive attitude tracking control of a 3-degrees-of-freedom experimental helicopter with actuator dead-zone[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering2019233(1): 91-99.
12 ZHENG B, ZHONG Y S. Robust attitude regulation of a 3-DOF helicopter benchmark: Theory and experiments[J]. IEEE Transactions on Industrial Electronics201158(2): 660-670.
13 PLESTAN F, CHRIETTE A. A robust controller based on adaptive super-twisting algorithm for a 3DOF helicopter[C]∥ 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2013: 7095-7100.
14 MEHNDIRATTA M, KAYACAN E. Receding horizon control of a 3 DOF helicopter using online estimation of aerodynamic parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2018232(8): 1442-1453.
15 YANG X B, ZHENG X L. Adaptive NN backstepping control design for a 3-DOF helicopter: Theory and experiments[J]. IEEE Transactions on Industrial Electronics202067(5): 3967-3979.
16 ZHU X Y, LI D D. Robust attitude control of a 3-DOF helicopter considering actuator saturation[J]. Mechanical Systems and Signal Processing2021149: 107209.
17 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策199510(1): 85-88.
  HAN J Q. The “extended state observer” of a class of uncertain systems[J]. Control and Decision199510(1): 85-88 (in Chinese).
18 DU Y W, CAO W H, SHE J H, et al. Disturbance rejection and control system design using improved equivalent input disturbance approach[J]. IEEE Transactions on Industrial Electronics202067(4): 3013-3023.
19 HOU Q K, DING S H. GPIO based super-twisting sliding mode control for PMSM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs202168(2): 747-751.
20 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报202142(1): 523899.
  LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica202142(1): 523899 (in Chinese).
21 LI J F, JAHANSHAHI H, KACAR S, et al. On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control[J]. Chaos, Solitons & Fractals, 2021145: 110681.
22 ZHONG Q C, REES D. Control of uncertain LTI systems based on an uncertainty and disturbance estimator[J]. Journal of Dynamic Systems, Measurement, and Control2004126(4): 905-910.
23 ZHONG Q C, KUPERMAN A, STOBART R K. Design of UDE-based controllers from their two-degree-of-freedom nature[J]. International Journal of Robust and Nonlinear Control201121(17): 1994-2008.
24 TALOLE S E, PHADKE S B. Robust input–output linearisation using uncertainty and disturbance estimation[J]. International Journal of Control200982(10): 1794-1803.
25 ZHU B, ZHANG Q R, LIU H H T. A comparative study of robust attitude synchronization controllers for multiple 3-DOF helicopters[C]∥ 2015 American Control Conference (ACC). Piscataway: IEEE Press, 2015: 5960-5965.
26 REN B B, ZHONG Q C, CHEN J H. Robust control for a class of nonaffine nonlinear systems based on the uncertainty and disturbance estimator[J]. IEEE Transactions on Industrial Electronics201562(9): 5881-5888.
27 LU Q, REN B B, PARAMESWARAN S. Uncertainty and disturbance estimator-based global trajectory tracking control for a quadrotor[J]. IEEE/ASME Transactions on Mechatronics202025(3): 1519-1530.
28 KOLHE J P, SHAHEED M, CHANDAR T S, et al. Robust control of robot manipulators based on uncertainty and disturbance estimation[J]. International Journal of Robust and Nonlinear Control201323(1): 104-122.
29 LONDHE P S, DHADEKAR D D, PATRE B M, et al. Uncertainty and disturbance estimator based sliding mode control of an autonomous underwater vehicle[J]. International Journal of Dynamics and Control20175(4): 1122-1138.
30 ZHU B, LIU H H T, LI Z. Robust distributed attitude synchronization of multiple three-DOF experimental helicopters[J]. Control Engineering Practice201536: 87-99.
31 YIN Z, HE W, KAYNAK O, et al. Uncertainty and disturbance estimator-based control of a flapping-wing aerial vehicle with unknown backlash-like hysteresis[J]. IEEE Transactions on Industrial Electronics202067(6): 4826-4835.
32 李世尧, 张特, 朱波, 等. 三自由度直升机多刚体动力学建模与参数辨识[J/OL]. 吉林大学学报(工学版), (2022-07-26) [2023-05-27]. .
  LI S Y, ZHANG T, ZHU B, et al. Multi-rigid-body dynamics and parameter identification of a 3-DOF helicopter[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2022-07-26) [2023-05-27]. (in Chinese).
33 段广仁. 高阶系统方法: I.全驱系统与参数化设计[J]. 自动化学报202046(7): 1333-1345.
  DUAN G R. High-order system approaches: I. fully-actuated systems and parametric designs[J]. Acta Automatica Sinica202046(7): 1333-1345 (in Chinese).
34 NALDI R, FURCI M, SANFELICE R G, et al. Robust global trajectory tracking for underactuated VTOL aerial vehicles using inner-outer loop control paradigms[J]. IEEE Transactions on Automatic Control201762(1): 97-112.
35 MALLIK R. Robust control approaches for minimizing the bandwidth ratio in multi-loop control[DB/OL]. arXiv preprint: 2203.09022, 2022.
36 固高科技. GHP2002型三自由度直升机[EB/OL]. (2014-08-15) [2023-05-27]. .
  GOOGOL TECH. GHP 2002 3-degree-of-freedom helicopter[EB/OL]. (2014-08-15) [2023-05-27]. (in Chinese).
37 ZHANG T, LI S Y, ZHU B, et al. TV-UDE: Time-varying uncertainty and disturbance estimator[J]. International Journal of Robust and Nonlinear Control202333(16): 9579-9601.
38 XU L X, QIN K Y, TANG F, et al. UDE-based dynamic surface control for quadrotor drone attitude tracking under non-ideal actuators[J]. Drones20237(5): 305.
39 CHEN J H, REN B B, ZHONG Q C. UDE-based trajectory tracking control of piezoelectric stages[J]. IEEE Transactions on Industrial Electronics201663(10): 6450-6459.
40 BEKER O, HOLLOT C V, CHAIT Y. Plant with integrator: An example of reset control overcoming limitations of linear feedback[J]. IEEE Transactions on Automatic Control200146(11): 1797-1799.
41 KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2002: 612-618.
Outlines

/