ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Powered deceleration guidance method based on gravity-turn analytical solutions
Received date: 2023-01-09
Revised date: 2023-02-15
Accepted date: 2023-07-11
Online published: 2023-09-13
One of the key technologies of rocket vertical recovery is the guidance technology in the powered deceleration phase. The requirements and constraints in the powered deceleration phase for the guidance system in the return process are analyzed, and a powered deceleration guidance method based on the gravity-turn analytical solution with variable axial apparent acceleration is studied. Considering the existence of propellent consumption in the powered deceleration phase, the mass lost in the flight process of the rocket is expanded by the first-order Taylor expansion at the initial mass, and then the first-order gravity-turn analytical solution of the variable axial apparent acceleration is obtained, and the superiority of the analytical solution is verified by simulation. Using this analytical solution, an adaptive handover method based on the range to be flown is designed, which can better correct the range deviation of the landing point. Based on the analytical prediction, the angle of attack and sideslip angle are corrected by the deviation between the landing point prediction and the virtual target point feedback, so as to meet the constraints of range, shutdown point speed and shutdown point attitude at the same time. The simulation results show that the adaptive handover method has the advantages of reducing the angle of attack and improving the position correction capability during dynamic deceleration flight. The guidance method proposed can meet the terminal position and specific mechanical energy constraints as well as the constraint of the terminal angle of attack, causing only slight change in the heat flow in the aerodynamic deceleration section of different trajectories.
Zhi ZHANG , Han YUAN , Wanqing ZHANG . Powered deceleration guidance method based on gravity-turn analytical solutions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 628483 -628483 . DOI: 10.7527/S1000-6893.2023.28483
1 | 朱坤, 杨铁成, 周宁. 从低成本角度探讨航天运载器技术发展路线[J]. 飞航导弹, 2021(6): 1-6, 13. |
ZHU K, YANG T C, ZHOU N. Discussion on the development route of space launch vehicle technology from the perspective of low cost[J]. Aerodynamic Missile Journal, 2021(6): 1-6, 13 (in Chinese). | |
2 | 陈志会, 宁雷, 王鹏. 运载火箭助推器回收技术分析与启示[J]. 宇航总体技术, 2021, 5(5): 66-74. |
CHEN Z H, NING L, WANG P. The development of launch vehicle booster recovery technology[J]. Astronautical Systems Engineering Technology, 2021, 5(5): 66-74 (in Chinese). | |
3 | Harpold J C, Graves C A. Shuttle entry guidance:JSC-14694[R]. Huston: NASA Lyndon B. Johnson Space Center, 1979. |
4 | Toll A P. Skylon (Spacecraft)[M]. Berlin: Ceed Publishing, 2012. |
5 | 郭景良. 日本完成HOPE-X试验[J]. 国外卫星动态, 2003(9):2. |
GUO J L. Japan completed the HOPE-X test [J]. Trends of Foreign Satellites, 2003 (9): 2 (in Chinese). | |
6 | 杨开, 才满瑞. 蓝色起源公司“新谢泼德”飞行器及其未来发展分析[J]. 国际太空, 2018(7): 18-24. |
YANG K, CAI M R. Analysis on new Shepard vehicle and the future of blue origin[J]. Space International, 2018(7): 18-24 (in Chinese). | |
7 | 王芳, 程洪玮, 彭博. “猎鹰9”运载火箭海上平台成功回收的分析及启示[J]. 装备学院学报, 2016, 27(6): 69-74. |
WANG F, CHENG H W, PENG B. Analysis and enlightenment of successful retrieval of “falcon 9” rocket on offshore platform[J]. Journal of Equipment Academy, 2016, 27(6): 69-74 (in Chinese). | |
8 | 谭云雷, 张轩宇, 徐恒, 等. 美国猎鹰火箭发展概述与应用探讨[J]. 现代工业经济和信息化, 2021, 11(10): 15-19. |
TAN Y L, ZHANG X Y, XU H, et al. Overview and application of American falcon rocket[J]. Modern Industrial Economy and Informationization, 2021, 11(10): 15-19 (in Chinese). | |
9 | 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11): 525050. |
SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525050 (in Chinese). | |
10 | 宋征宇, 黄兵, 汪小卫, 等. 重复使用运载器回收技术现状与挑战[J]. 深空探测学报(中英文), 2022, 9(5): 457-469, 455. |
SONG Z Y, HUANG B, WANG X W, et al. Status and challenges of reusable launch vehicle recovery technology[J]. Journal of Deep Space Exploration, 2022, 9(5): 457-469, 455 (in Chinese). | |
11 | LI Y, CHEN W C, ZHOU H, et al. Conjugate gradient method with pseudospectral collocation scheme for optimal rocket landing guidance[J]. Aerospace Science and Technology, 2020, 104: 105999. |
12 | 张斌. 某型运载火箭上升段制导控制研究[D]. 西安: 西安电子科技大学, 2020. |
ZHANG B. Research on guidance control of the rising stage of A certain launch vehicle[D]. Xi'an: Xidian University, 2020 (in Chinese). | |
13 | Walter H., Guidance and control of Saturn launch vehicles: 65-304[R]. Reston: AIAA, 1965. |
14 | 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术, 2018, 38(2): 24-31. |
SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints[J]. Chinese Space Science and Technology, 2018, 38(2): 24-31 (in Chinese). | |
15 | 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J]. 宇航学报, 2003, 24(5): 484-489, 501. |
CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003, 24(5): 484-489, 501 (in Chinese). | |
16 | 郑旭, 高长生, 陈尔康, 等. 一种基于大气层外解析动力学模型的最优迭代制导方法[J]. 西北工业大学学报, 2016, 34(6): 1093-1100. |
ZHENG X, GAO C S, CHEN E K, et al. An optimal iterative guidance method based on exoatmospheric analytical dynamic model[J]. Journal of Northwestern Polytechnical University, 2016, 34(6): 1093-1100 (in Chinese). | |
17 | 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学(E辑: 技术科学), 2009, 39(4): 696-706. |
RU J X. An iterative guidance method for liquid launch vehicle[J]. Science in China (Series E (Technological Sciences)), 2009, 39(4): 696-706 (in Chinese). | |
18 | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7): 322782. |
WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322782 (in Chinese). | |
19 | 宋征宇. 从准确、精确到精益求精: 载人航天推动运载火箭制导方法的发展[J]. 航天控制, 2013, 31(1): 4-10, 31. |
SONG Z Y. From accurate, precise to perfect-manned space promotes the development of guidance method on launch vehicle[J]. Aerospace Control, 2013, 31(1): 4-10, 31 (in Chinese). | |
20 | 唐明亮, 邱伟, 王颖, 等. 基于摄动制导的运载火箭一子级落点控制[J]. 导弹与航天运载技术, 2017(4): 68-71. |
TANG M L, QIU W, WANG Y, et al. Impact point control of first sub-stage of launch vehicle based on perturbation guidance[J]. Missiles and Space Vehicles, 2017(4): 68-71 (in Chinese). | |
21 | 王小虎, 陈翰馥, 刘锋. 机动再入飞行器主动段再入点约束闭路制导研究[J]. 宇航学报, 2002, 23(4): 37-41, 51. |
WANG X H, CHEN H F, LIU F. Study of the closed-loop guidance law for boost phase with reentry constraints of maneuvering reentry vehicles[J]. Journal of Astronautics, 2002, 23(4): 37-41, 51 (in Chinese). | |
22 | 陈磊, 任萱, 王海丽. 战术弹道导弹中段多弹头进攻方法的研究[J]. 航天控制, 2000, 18(2): 1-4, 11. |
CHEN L, REN X, WANG H L. The research of submunitions’ attacking method in the midcourse of tactical ballistic missile[J]. Aerospace Control, 2000, 18(2): 1-4, 11 (in Chinese). | |
23 | 王汀. 多约束火星精确着陆制导与控制律研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
WANG T. Guidance and control law for Mars pinpoint landing under multi-constraints[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
24 | KEMP N H, RIDDELL F R. Heat transfer to satellite vehicles re-entering the atmosphere[J]. Journal of Jet Propulsion, 1957, 27(2): 132-137. |
25 | HE S M, LEE C H. Gravity-turn-assisted optimal guidance law[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(1): 171-183. |
26 | 胡军, 周敬. 基于自适应预测校正的月球软着陆制导控制方法[J]. 飞控与探测, 2022, 5(2): 1-13. |
HU J, ZHOU J. A guidance and control method for moon soft landing based on the adaptive predictor-corrector[J]. Flight Control & Detection, 2022, 5(2): 1-13 (in Chinese). | |
27 | 赵党军, 梁步阁, 杨德贵, 等. 基于序列凸优化的高超声速滑翔式再入轨迹快速优化[J]. 宇航总体技术, 2017, 1(1): 34-40. |
ZHAO D J, LIANG B G, YANG D G, et al. Rapid planning of reentry trajectory via sequential convex optimization[J]. Astronautical Systems Engineering Technology, 2017, 1(1): 34-40 (in Chinese). | |
28 | 郭杰, 相岩, 王肖, 等. 基于hp伪谱同伦凸优化的火箭垂直回收在线轨迹规划方法[J]. 宇航学报, 2022, 43(5): 603-614. |
GUO J, XIANG Y, WANG X, et al. Online trajectory planning method for rocket vertical recovery based on hp pseudospectral homotopic convex optimization[J]. Journal of Astronautics, 2022, 43(5): 603-614 (in Chinese). | |
29 | ZHANG B J, LIU Z C, LIU G. High-precision adaptive predictive entry guidance for vertical rocket landing[J]. Journal of Spacecraft and Rockets, 2019, 56(6): 1735-1741. |
30 | 陈峰, 肖业伦, 陈万春. 基于零控脱靶量的大气层外超远程拦截制导[J]. 航空学报, 2009, 30(9): 1583-1589. |
CHEN F, XIAO Y L, CHEN W C. Guidance based on zero effort miss for super-range exoatmospheric intercept[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1583-1589 (in Chinese). | |
31 | 张洪波. 航天器轨道力学理论与方法[M]. 北京: 国防工业出版社, 2015: 72-79. |
ZHANG H B. Theories and methods of spacecraft orbital mechanics[M]. Beijing: National Defense Industry Press, 2015: 72-79 (in Chinese). | |
32 | 杨炳尉. 标准大气参数的公式表示[J]. 宇航学报, 1983, 4(1): 83-86. |
YANG B W. Formulization of standard atmospheric parameters[J]. Journal of Astronautics, 1983, 4(1): 83-86 (in Chinese). |
/
〈 |
|
〉 |