Solid Mechanics and Vehicle Conceptual Design

Optimization design method of central fuselage spherical deficient surface frames in blended⁃wing⁃body civil aircraft based on PRSEUS structure

  • Yongjie ZHANG ,
  • Jingpiao ZHOU ,
  • Lei SHI ,
  • Dong LI ,
  • Binqian ZHANG
Expand
  • 1.School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China
    2.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: a045519zjp@163.com

Received date: 2023-07-17

  Revised date: 2023-08-02

  Accepted date: 2023-08-22

  Online published: 2023-09-01

Supported by

National Natural Science Foundation of China(11972301)

Abstract

The Blended Wing Body (BWB) layout is an unconventional subsonic transport aircraft configuration. To address the design challenges of the aft pressure frame in this layout, this paper conducts optimization design work on the central fuselage circumferential frame using NASA’s proposed Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Finite element models are separately established for a certain type of BWB aircraft's aluminum flat frame and the PRSEUS pherical deficient surfaces frame. Numerical simulations and comparisons reveal that the PRSEUS pherical deficient surfaces frame exhibits superior load-bearing performance and lower structural weight. Building upon this, the paper performs further sensitivity analysis on the PRSEUS pherical deficient surfaces frame, identifying influential parameters related to its static strength and stability, and summarizing the impact patterns. By analyzing the effects of key parameters in the collaborative optimization process, a synergy optimization strategy based on surrogate models is developed, known for its strong applicability and high efficiency. Employing this collaborative optimization approach, the paper optimizes the dimensions of the PRSEUS pherical deficient surfaces frame. Through a thorough optimality analysis of the results, an optimized solution that balances static strength and stability is achieved, reducing the weight of the PRSEUS pherical deficient surfaces frame by 10.6%. The designed PRSEUS pherical deficient surfaces frame excels in load-carrying efficiency and stability, whichoffers valuable insights to designers and researchers in related fields.

Cite this article

Yongjie ZHANG , Jingpiao ZHOU , Lei SHI , Dong LI , Binqian ZHANG . Optimization design method of central fuselage spherical deficient surface frames in blended⁃wing⁃body civil aircraft based on PRSEUS structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(12) : 229331 -229331 . DOI: 10.7527/S1000-6893.2023.29331

References

1 LIEBECK R. Design of the Blended-Wing-Body subsonic transport[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
2 MUKHOPADHYAY V. Hybrid-wing-body pressurized fuselage modeling, analysis and design for weight reduction[C]∥ Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
3 WU H Y T, SHAW P, PRZEKOP A. Analysis of a hybrid wing body center section test article[C]∥ Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
4 PRZEKOP A. Repair concepts as design constraints of a stiffened composite PRSEUS panel[C]∥ Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012.
5 VELICKI A, JEGLEY D. PRSEUS development for the hybrid wing body aircraft[C]∥ Proceedings of the AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”. Reston: AIAA, 2011.
6 PAPAPETROU V S, TAMIJANI A, KIM D. Preliminary Wing Study of General Aviation Aircraft with PRSEUS panels[C]∥ Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016.
7 LI V, VELICKI A. Advanced PRSEUS structural concept design and optimization[C]∥ Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
8 ETTOUMI S. Study of analysis and damage prediction methods of BWB wing structure based on PRSEUS[D]. Xi’an: Northwestern Polytechnical University, 2023: 2-4.
9 NIU C. Airframe stress analysis and sizing[M]. 3rd ed. Madrid: Adaso/Adastra Engineering Center, 2011.
10 飞机设计手册总编委会. 飞机设计手册第10册[M]. 北京:航空工业出版社, 2005: 540-554.
  Editorial Board of Aireraft Design Manual. Aircraft designmanual,Part10[M].Beijing: Aviation Industry Press, 2005: 540-554 (in Chinese).
11 陶梅贞. 现代飞机结构综合设计[M]. 西安: 西.北工业大学出版社, 2014: 254-258.
  TAO M Z. Comprehensive design of modern aircraft structure[M]. Xi’an: Northwestern Polytechnical University Press, 2014: 254-258 (in Chinese).
12 VENKATESH S, KUTTY M, VARUGHESE B, et al. Design, Development and certification of composite rear pressure bulkhead for a light transport aircraft[C]∥ 18th International Conference on Composite Materials. Melbourne: ICCM, 2011: 1-6.
13 LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics201225(4): 508-516.
14 ZHU W S, FAN Z W, YU X Q. Structural mass prediction in conceptual design of blended-wing-body aircraft[J]. Chinese Journal of Aeronautics201932(11): 2455-2465.
15 NIU B M C Y. Airframe structural design: practical design information and data on aircraft structures[M]. 2nd ed. Madrid: Adaso/Adastra Engineering Center, 1999.
16 VELICKI A, YOVANOF N P, BARAJA J, et al. Damage arresting composites for shaped vehicles—Phase II Final report[R]. Washington, D. C. : NASA, 2011.
17 中国民用航空总局. 运输类飞机适航标准:CCAR-25-R4 [S]. 北京: 中华人民共和国交通运输部, 2011.
  General Administration of Civil Aviation of China. China Civil Aviation Regulations:CCAR-25-R4 [S]. Beijing: Ministry of Transport of the People’s Republic of China, 2011 (in Chinese).
18 郝一鸣. 复合材料后压力框整体结构设计及其稳定性分析研究[D]. 上海: 上海交通大学, 2011: 47-54.
  HAO Y M. Stability analysis and global structure design of composite rear pressure bulkhead[D].Shanghai: Shanghai Jiao Tong University, 2011: 47-54 (in Chinese) .
19 刘蔚. 多学科设计优化方法在7 000米载人潜水器总体设计中的应用[D]. 上海: 上海交通大学, 2007: 10-14.
  LIU W/Y). Application of MDO method to 7 000m HOV general design[D].Shanghai: Shanghai Jiao Tong University, 2007: 10-14 (in Chinese) .
20 张伟林. 多学科设计优化在悬架设计中的应用研究[D]. 长春: 吉林大学, 2017: 23-47.
  ZHANG W L. Suspension applied research based on multi-disciplinary design optimization[D].Changchun: Jilin University, 2017: 23-47 (in Chinese).
21 王振国, 陈小前, 罗文彩, 等. 飞行器多学科设计优化理论与应用研究[M]. 北京: 国防工业出版社, 2006: 229-231.
  WANG Z G, CHEN X Q, LUO W C, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing: National Defense Industry Press, 2006: 229-231 (in Chinese).
22 宋保维, 王鹏. 鱼雷多学科设计优化理论与应用研究[M]. 西安: 西北工业大学出版社, 2016: 105-107.
  SONG B W, WANG P. Research on theory and application of multidisciplinary design optimization of torpedo[M]. Xi’an: Northwestern Polytechnical University Press, 2016: 105-107 (in Chinese).
23 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用[M]. 北京: 科学出版社, 2013: 82-84.
  CHEN X Q, YAO W, OUYANG Q. Theory and application of uncertainty-based multidisciplinary design optimization for flight vehicles[M]. Beijing: Science Press, 2013: 82-84 (in Chinese).
24 叶鹏程. 代理模型技术研究及其在水下滑翔机外形设计中的应用[D]. 西安: 西北工业大学, 2017: 28-29.
  YE P C. Research on surrogate modeling techniques and applied to shape design of autonomous underwater glider[D].Xi’an: Northwestern Polytechnical University, 2017: 28-29 (in Chinese).
25 ILAN K, STEVE A, ROBERT B, et al. Multidisciplinary optimization methods for aircraft preliminary design[C]∥ 5th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA,1994.
26 刘自豪. 极地AUV的优化设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020: 28-34.
  LIU Z H. Research on optimal design method of Arctic AUV[D].Harbin: Harbin Engineering University, 2020: 28-34 (in Chinese).
Outlines

/