ACTA AERONAUTICAET ASTRONAUTICA SINICA >
PCA aerodynamic geometry parametrization method
Received date: 2023-06-05
Revised date: 2023-08-03
Accepted date: 2023-08-25
Online published: 2023-09-01
Supported by
Zhiqiang Foundation;National Key Research and Development Program of China(2019YFA0405202)
Geometry parametrization plays a significant role in Aerodynamic Shape Optimization (ASO). A succinct, accurate, and efficient geometric presentation method can effectively improve the optimization efficiency and the design results. Principal Component Analysis (PCA) is a common way to extract data features and reduce data dimension. In this paper, an airfoil geometry parameterization method based on the PCA is firstly introduced. Then, the influences of sampling space, sample number, sampling method and geometric reconstruction method on PCA dimension reduction ability, base mode characteristics and geometric presentation ability are analyzed. Furthermore, the presentation ability of the PCA method on aerodynamic characteristics is also studied based on computation fluid dynamics. Simulation results show that: the PCA method could effectively describe the airfoil geometry shape with preferable accuracy and relatively few, physically meaningful parameters; based on a specific sampling method, the PCA mode, the dimension reduction ability and the geometric accuracy are little affected by the sampling space and the sample number, though they are sensitive to the parameters of the sampling method; the PCA method described in this paper could not only accurately describe the geometry shape, but also ensure the accuracy of the aerodynamic forces to a certain degree, which has certain guiding significance in ASO applications.
Jing YU , Anlin JIANG , Liang LIU , Xiaojun WU , Yewei GUI , Shenshen LIU . PCA aerodynamic geometry parametrization method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 129125 -129125 . DOI: 10.7527/S1000-6893.2023.29125
1 | 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报, 2021, 39(6):1-36. |
HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: History, current status, and future directions[J]. Acta Aerodynamica Sinica, 2021, 39(6): 1-36 (in Chinese). | |
2 | SAMAREH J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884. |
3 | 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633. |
GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese). | |
4 | 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学: 物理学 力学 天文学, 2014, 44(3): 267-277. |
WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3): 267-277 (in Chinese). | |
5 | 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3): 695-705. |
CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). | |
6 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
7 | 刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46. |
LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46 (in Chinese). | |
8 | KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes: AIAA-2006-6948[R]. Reston: AIAA, 2006. |
9 | 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014, 5(3): 281-288, 295. |
ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 281-288, 295 (in Chinese). | |
10 | 粟华, 龚春林, 谷良贤. 基于三维CST建模方法的两层气动外形优化策略[J]. 固体火箭技术, 2014, 37(1): 1-6, 22. |
SU H, GONG C L, GU L X. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Technology, 2014, 37(1): 1-6, 22 (in Chinese). | |
11 | 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2): 449-461. |
WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449-461 (in Chinese). | |
12 | 徐亚峰. 基于CST参数化方法的飞机翼型快速设计研究[D]. 南京: 南京航空航天大学, 2012. |
XU Y F. Fast airfoil design based on CST parameterization[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
13 | OYAMA A, NONOMURA T, FUJII K. Data mining of pareto-optimal transonic airfoil shapes using proper orthogonal decomposition: AIAA-2009-4000[R]. Reston: AIAA, 2009. |
14 | OYAMA A, VERBURG P, NONOMURA T, et al. Flow field data mining of pareto-optimal airfoils using proper orthogonal decomposition: AIAA-2010-1140[R]. Reston: AIAA, 2010. |
15 | POOLE D J, ALLEN C B, RENDALL T C S. Metric-based mathematical derivation of efficient airfoil design variables[J]. AIAA Journal, 2015, 53(5): 1349-1361. |
16 | MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal, 2017, 55(5): 1575-1589. |
17 | 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018. |
WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
18 | CINQUEGRANA D, IULIANO E. Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization[J]. Computers & Fluids, 2018, 174: 89-109. |
19 | 段焰辉, 吴文华, 范召林, 等. 基于本征正交分解的气动优化设计外形数据挖掘[J]. 物理学报, 2017, 66(22): 138-147. |
DUAN Y H, WU W H, FAN Z L, et al. Proper orthogonal decomposition-based data mining of aerodynamic shape for design optimization[J]. Acta Physica Sinica, 2017, 66(22): 138-147 (in Chinese). | |
20 | JOLLIFFE I T. Principal component analysis[M]. New York: Springer, 2005. |
21 | 赵秀红. 基于主成分分析的特征提取的研究[D]. 西安: 西安电子科技大学, 2016. |
ZHAO X H. Research on feature extraction based on principal component analysis[D].Xi’an: Xidian University, 2016 (in Chinese). | |
22 | 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9):625739. |
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW)Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese). |
/
〈 |
|
〉 |