Special Topic: Fully Actuated System Theory and Its Applications in Aerospace Field

Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach

  • Guangquan DUAN ,
  • Guoping LIU
Expand
  • 1.Center for Control Theory and Guidance Technology,Harbin Institute of Technology,Harbin 150001,China
    2.Center for Control Science and Technology,Southern University of Science and Technology,Shenzhen 518055,China

Received date: 2023-04-07

  Revised date: 2023-05-17

  Accepted date: 2023-08-11

  Online published: 2023-08-24

Supported by

National Natural Science Foundation of China(62188101)

Abstract

An adaptive prescribed performance controller based on the fully actuated system approach is designed for the position and attitude control of the combined spacecraft formed after the successful capture of the non-cooperative spacecraft, considering the influence of unknown disturbance in the combined spacecraft system. A combined spacecraft position and attitude dynamics equation is established based on the Euler's attitude dynamics equation and the orbit dynamics model. The transient and steady-state performance of the combined spacecraft position and attitude error is constrained by introducing a prescribed performance function. Furthermore, the adaptive prescribed performance controller is designed for the combined spacecraft state error system with unknown disturbance by applying the fully actuated system approach. In addition, the proposed adaptive prescribed performance controller is proved by constructing the Lyapunov function. Finally, the numerical simulation results based on the combined spacecraft system model and the experimental results obtained from the semi-physical simulation platform show that under the action of the designed controller, the combined spacecraft can achieve accurate position and attitude control and the state error of the system is always within the prescribed performance envelope, which verifies the effectiveness and practicality of the designed controller.

Cite this article

Guangquan DUAN , Guoping LIU . Adaptive prescribed control of position and attitude of combined spacecraft based on fully actuated system approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(1) : 628837 -628837 . DOI: 10.7527/S1000-6893.2023.28837

References

1 FENG F, TANG L N, XU J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science China Technological Sciences201659(11): 1621-1638.
2 LI S, SHE Y C. Recent advances in contact dynamics and post-capture control for combined spacecraft[J]. Progress in Aerospace Sciences2021120: 100678.
3 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报201839(1): 021302.
  LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica201839(1): 021302 (in Chinese).
4 FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences201468: 1-26.
5 HUANG P F, LU Y B, WANG M, et al. Postcapture attitude takeover control of a partially failed spacecraft with parametric uncertainties[J]. IEEE Transactions on Automation Science and Engineering201916(2): 919-930.
6 QIAO J Z, LIU Z B, LI W S. Anti-disturbance attitude control of combined spacecraft with enhanced control allocation scheme[J]. Chinese Journal of Aeronautics201831(8): 1741-1751.
7 WANG Y P, XIE Y C, WU X F. Adaptive control of spacecraft with a captured non-cooperative object[C]∥2018 37th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2018: 2957-2962.
8 XIE Y H, LV Y Y, HE H Y, et al. Inertial parameters on-orbit identification of noncooperative target in postcapture[C]∥2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC). Piscataway: IEEE Press, 2020: 788-793.
9 ZHANG T, YUE X K, YUAN J P. An online one-step method to identify inertial parameters of the base and the target simultaneously for space robots in postcapture[J]. IEEE Access20208: 189913-189929.
10 WEI C S, LUO J J, XU C, et al. Low-complexity stabilization control of combined spacecraft with an unknown captured object[C]∥2017 36th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2017: 1075-1080.
11 GAO H, MA G F, LYU Y Y, et al. Data-driven model-free adaptive attitude control of partially constrained combined spacecraft with external disturbances and input saturation[J]. Chinese Journal of Aeronautics201932(5): 1281-1293.
12 BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control200853(9): 2090-2099.
13 BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica200945(2): 532-538.
14 WEI C S, LUO J J, DAI H H, et al. Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications[J]. Acta Astronautica2018146: 228-242.
15 LUO J J, WEI C S, DAI H H, et al. Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance[J]. ISA Transactions201874: 28-44.
16 HUANG X W, BIGGS J D, DUAN G R. Post-capture attitude control with prescribed performance[J]. Aerospace Science and Technology202096: 105572.
17 HUANG X W, DUAN G R. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance[J]. ISA Transactions202098: 161-172.
18 DUAN G R. High-order fully actuated system approaches: Part I. Models and basic procedure[J]. International Journal of Systems Science202152(2): 422-435.
19 DUAN G R. High-order fully actuated system approaches: Part V. Robust adaptive control[J]. International Journal of Systems Science202152(10): 2129-2143.
20 LI Z, ZHANG Y, ZHANG R. Prescribed error performance control for second-order fully actuated systems[J]. Journal of Systems Science and Complexity202235(2): 660-669.
21 刘明, 范睿超, 邱实, 等 . 基于全驱系统理论的航天器姿轨预设性能控制[J]. 航空学报202445(1): 628313.
  LIU M, FAN R C, QIU S, et al. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach [J]. Acta Aeronautica et Astronautica Sinica202445(1): 628313 (in Chinese).
22 ZHAO Q, DUAN G R. Fully actuated system approach for 6DOF spacecraft control based on extended state observer[J]. Journal of Systems Science and Complexity202235(2): 604-622.
23 HAN N, LUO J J, ZHENG Z X, et al. Distributed cooperative game method for attitude takeover of failed satellites using nanosatellites[J]. Aerospace Science and Technology2020106: 106151.
24 CHAI Y, LUO J J, HAN N, et al. Linear quadratic differential game approach for attitude takeover control of failed spacecraft[J]. Acta Astronautica2020175: 142-154.
25 DUAN G Q, LIU G P. Attitude and orbit optimal control of combined spacecraft via a fully-actuated system approach[J]. Journal of Systems Science and Complexity202235(2): 623-640.
Outlines

/