ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Ice area and thickness detection method based on deep learning
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-08-07
Online published: 2023-08-18
Supported by
National Natural Science Foundation of China(51875478);Aeronautical Science Foundation of China(2017ZC53036)
Aircraft icing has become one of the biggest threats to safe flight of aircraft, accounting for more than half of military and civil aircraft accidents in the world. Therefore, it is extremely important to detect the icing conditions during flight. Traditional icing sensors can only detect icing information at fixed points and cannot provide feedback on the icing status of overall area. In this paper, a large-area icing detection method is proposed, and a real-time airfoil icing detection model is established by using deep learning algorithm. Airfoil icing area is detected and segmented in real time using the fuselage image captured by cameras as input, and the icing thickness of the airfoil leading edge is calculated. The experimental results from the self-built icing dataset show that the average accuracy of the algorithm is 99.32%, the mean intersection over union is 93.20%, the theoretical spatial resolution is approximately 0.4 mm at a distance of 1.5 m, the actual measurement error is within 1 mm, and the real-time detection frame rate is 4 frame/s. The experiments demonstrate that this method has excellent detection performance, and potentially lay research foundation for aircraft icing detection and ground icing wind tunnel tests.
Key words: deep learning; semantic segmentation; ice detection; thickness detection; UNet
Xin SU , Runcheng GUAN , Qiao WANG , Weizheng YUAN , Xianglian LYU , Yang HE . Ice area and thickness detection method based on deep learning[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729283 -729283 . DOI: 10.7527/S1000-6893.2023.29283
1 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
2 | 朱东宇, 张付昆, 裴如男, 等. 临界冰形确定方法及其对气动特性影响研究[J]. 空气动力学学报, 2016, 34(6): 714-720. |
ZHU D Y, ZHANG F K, PEI R N, et al. Research on critical ice shape determination and its effects on aerodynamics[J]. Acta Aerodynamica Sinica, 2016, 34(6): 714-720 (in Chinese). | |
3 | 薛源, 徐浩军, 裴彬彬, 等. 基于蒙特卡罗法的飞机结冰后动力学特性分析[J]. 实验流体力学, 2016, 30(2): 26-31, 37. |
XUE Y, XU H J, PEI B B, et al. Dynamic characteristics analysis after aircraft icing based on Monte Carlo method[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 26-31, 37 (in Chinese). | |
4 | YAN Z X, HE Y, YUAN W Z. Anti-icing skin with micro-nano structure inspired by Fargesia qinlingensis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40(2): 115-123. |
5 | 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578-1586. |
ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578-1586 (in Chinese). | |
6 | 任宏宇. 双余度结冰探测系统的研究与开发[D]. 武汉: 华中科技大学, 2021: 4-10. |
REN H Y. Research and development of dual redundancy ice detection system[D]. Wuhan: Huazhong University of Science and Technology, 2021: 4-10 (in Chinese). | |
7 | ZHI X, CHO H C, WANG B, et al. Development of a capacitive ice sensor to measure ice growth in real time[J]. Sensors, 2015, 15(3): 6688-6698. |
8 | FLATSCHER M, NEUMAYER M, BRETTERKLIE? BER T. Maintaining critical infrastructure under cold climate conditions: A versatile sensing and heating concept[J]. Sensors and Actuators A: Physical, 2017, 267: 538-546. |
9 | 王岩, 王渊, 朱程香, 等. 谐振式飞机结冰探测传感器仿真及实验研究[J]. 南京航空航天大学学报, 2022, 54(2): 267-273. |
WANG Y, WANG Y, ZHU C X, et al. Simulation and experimental study of aircraft icing detection sensor by resonant[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(2): 267-273 (in Chinese). | |
10 | ZOU J H, YE L, GE J F. Ice type detection using an oblique end-face fibre-optic technique[J]. Measurement Science and Technology, 2013, 24(3): 035201. |
11 | 白天, 朱春玲, 李清英, 等. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报, 2013, 34(5): 1073-1082. |
BAI T, ZHU C L, LI Q Y, et al. Study of bimorph piezoelectric cantilever structure used on icing detection[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1073-1082 (in Chinese). | |
12 | 周志炜, 李起栋, 张鹏. 振管式结冰检测传感器设计优化及改进[J]. 传感器世界, 2017, 23(7): 17-20. |
ZHOU Z W, LI Q D, ZHANG P. Optimization and improvement in design of vibrating tube icing detection sensor[J]. Sensor World, 2017, 23(7): 17-20 (in Chinese). | |
13 | 赵伟伟. 基于压电材料的飞机结冰探测系统[D]. 南京: 南京航空航天大学, 2018: 24-40. |
ZHAO W W. Aircraft icing detection system based on piezoelectric materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 24-40 (in Chinese). | |
14 | 赵伟伟, 朱春玲, 陶明杰, 等. 超声导波技术用于飞机结冰探测的实验研究[J]. 压电与声光, 2018, 40(2): 269-275. |
ZHAO W W, ZHU C L, TAO M J, et al. Experimental study on ultrasonic guided wave technology for aircraft icing detection[J]. Piezoelectrics & Acoustooptics, 2018, 40(2): 269-275 (in Chinese). | |
15 | 郭奕兵. 基于FBG传感和石墨烯薄膜的风机结冰监测与除冰[D]. 哈尔滨: 哈尔滨工业大学, 2018: 16-36. |
GUO Y B. Graphene film combined with FBG sensor for icing monitoring and de-icing of wind turbine [D].Harbin: Harbin Institute of Technology, 2018: 16-36 (in Chinese). | |
16 | 武晋文, 王华征, 宋继红. 振筒式结冰探测器硬件电路设计[J]. 集成电路应用, 2020, 37(7): 20-21. |
WU J W, WANG H Z, SONG J H. Design of hardware circuit of ice detector with vibrating cylinder[J]. Application of IC, 2020, 37(7): 20-21 (in Chinese). | |
17 | 易贤, 李维浩, 王应宇, 等. 飞机结冰传感器安装位置确定方法[J]. 实验流体力学, 2018, 32(2): 48-54. |
YI X, LI W H, WANG Y Y, et al. Method of determining the location for aircraft icing prober[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 48-54 (in Chinese). | |
18 | AKHLOUFI M, BENMESBAH N. Outdoor ice accretion estimation of wind turbine blades using computer vision[C]∥2014 Canadian Conference on Computer and Robot Vision. Piscataway: IEEE Press, 2014: 246-253. |
19 | ZHUGE J C, YU Z J, GAO J S, et al. Influence of color coatings on aircraft surface ice detection based on multi-wavelength imaging[J]. Optoelectronics Letters, 2016, 12(2): 144-147. |
20 | 郭龙, 秦三春, 李强, 等. 基于机器视觉的飞机模型冰形轮廓提取方法研究[J]. 自动化与仪器仪表, 2020(6): 15-20. |
GUO L, QIN S C, LI Q, et al. Research on ice contour extraction of aircraft model based on machine vision[J]. Automation & Instrumentation, 2020(6): 15-20 (in Chinese). | |
21 | NOLTE M, KISTER N, MAURER M. Assessment of deep convolutional neural networks for road surface classification[C]∥2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway: IEEE Press, 2018: 381-386. |
22 | LIANG C J, GE J F, ZHANG W, et al. Winter road surface status recognition using deep semantic segmentation network[C]∥Proceedings of the International Workshop on Atmospheric Icing of Structures (IWAIS 2019). Cham: Springer, 2020: 91-100. |
23 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]∥European Conference on Computer Vision. Cham: Springer, 2014: 818-833. |
24 | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. |
25 | JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding[C]∥Proceedings of the 22nd ACM international conference on Multimedia. New York: ACM, 2014: 675-678. |
26 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]∥2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2016: 1026-1034. |
27 | ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. |
/
〈 |
|
〉 |