Fluid Mechanics and Flight Mechanics

Prediction of multi-mode hypersonic boundary layer transition based on C-γ-Reθ model

  • Zhenyu HU ,
  • Fengshou XIAO ,
  • Jianqiang CHEN ,
  • Xianxu YUAN ,
  • Yifeng ZHANG ,
  • Xinghao XIANG
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang  621000,China
    2.Beijing System Design Institute of Electro-mechanic Engineering,Beijing  100039,China
    3.Computational Aerodynamic Institute China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: kinog67@163.com

Received date: 2023-06-25

  Revised date: 2023-07-18

  Accepted date: 2023-08-07

  Online published: 2023-08-18

Supported by

National Key R & D Program of China(2019YFA0405204);National Natural Science Foundation of China(92052301);Foundation of State Key Laboratory of Aerodynamics(JBKYC190110)

Abstract

Standard models such as HIFiRE-5 and HyTRV are used in the validation of hypersonic three-dimensional boundary layer transition. Hypersonic crossflow transition correction is proposed in the C-γ-Reθ transition model based on the original γ-Reθ transition model. In this study, the C-γ-Reθ transition model is applied to transition simulation of HIFiRE-5 and HyTRV under flight test and wind tunnel test conditions. For the flight test of HIFiRE-5, transition prediction is conducted under the conditions including eight typical altitudes and one attitude angle, the results of the C-γ-Reθ transition model are consistent with the heat-flux measurements, and the transition modes on the surface of HIFiRE-5 are compared. For the quiet/noise wind tunnel test of HIFiRE-5, the C-γ-Reθ transition model can accurately calculate the transition front shape and the transition onset location, and the results coincide with the temperature difference measurements. For the noise wind tunnel test of HyTRV, the C-γ-Reθ transition model calculation results of the upper and lower surfaces match with the infrared thermogram measurements under the conditions involving various Reynolds numbers and Mach numbers, and the ability to predict boundary layer transition in the crossflow mode is verified. Its prediction precision of the transition onset location and the transition front shape is on par with the e N method based on LST. As shown in the numerical simulation results, for each of the flight test and the quiet/noise wind tunnel test, the C-γ-Reθ transition model maintains high prediction reliability, and has achieved hypersonic three-dimensional boundary layer transition prediction for typical standard models.

Cite this article

Zhenyu HU , Fengshou XIAO , Jianqiang CHEN , Xianxu YUAN , Yifeng ZHANG , Xinghao XIANG . Prediction of multi-mode hypersonic boundary layer transition based on C-γ-Reθ model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(12) : 129215 -129215 . DOI: 10.7527/S1000-6893.2023.29215

References

1 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报201735(3): 311-337.
  CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica201735(3): 311-337 (in Chinese).
2 ZHOU L, ZHAO R, WU Y, et al. Application of improved k-ω-γ transition model to hypersonic complex configurations[J]. AIAA Journal201957(5): 2214-2221.
3 刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ-Ret-fRe转捩模型[J]. 航空学报202243(8): 327-337.
  LIU Q Y, LEI J M, LIU Z, et al. γ-Ret-fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica202243(8): 327-337 (in Chinese).
4 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报202243(2): 124956.
  LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica202243(2): 124956 (in Chinese).
5 HUANG X Y, LI M D, WANG X L, et al. The Tianwen-1 guidance, navigation, and control for Mars entry, descent, and landing[J]. Space: Science & Technology20212021: 9846185.
6 LI Q, YUAN W, ZHAO R, et al. Study on effect of aerodynamic configuration on aerodynamic performance of Mars ascent vehicles[J]. Space: Science and Technology20222022: 9790131.
7 刘坤坤, 阎超, 郝子辉. 后掠机翼的横流不稳定性分析及转捩预测[J]. 气体物理20172(5): 18-24.
  LIU K K, YAN C, HAO Z H. Cross-flow instability analysis and transition prediction of swept wing[J]. Physics of Gases20172(5): 18-24 (in Chinese).
8 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报202243(7): 025357.
  LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025357 (in Chinese).
9 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报201637(4): 1092-1102.
  ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica201637(4): 1092-1102 (in Chinese).
10 张涵信. 关于CFD高精度保真的数值模拟研究[J]. 空气动力学学报201634(1): 1-4.
  ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica201634(1): 1-4 (in Chinese).
11 LI Q, ZHAO R, ZHANG S J, et al. Study on dynamic characteristics of Mars entry module in transonic and supersonic speeds[J]. Space: Science and Technology20222022: 9753286.
12 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报201836(2): 286-293.
  YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica201836(2): 286-293 (in Chinese).
13 孔维萱, 张辉, 阎超. 适用于高超声速边界层的转捩准则预测方法[J]. 导弹与航天运载技术2013(5): 54-58.
  KONG W X, ZHANG H, YAN C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles2013(5): 54-58 (in Chinese).
14 唐登斌. 边界层转捩[M]. 北京: 科学出版社, 2015: 31-34.
  TANG D B. Boundary layer transition[M]. Beijing: Science Press, 2015: 31-34 (in Chinese).
15 刘宏康, 陈坚强, 向星皓, 等. 改进k-ω-γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报202344(6): 126868.
  LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γ transition model[J]. Acta Aeronautica et Astronautica Sinica202344(6): 126868 (in Chinese).
16 LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal200947(12): 2894-2906.
17 王亮, 符松. 一种适用于超音速边界层的湍流转捩模式[J]. 力学学报200941(2): 162-168.
  WANG L, FU S. A new transition/turbulence model for the flow transition in supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics200941(2): 162-168 (in Chinese).
18 WARREN E S, HASSAN H A. Transition closure model for predicting transition onset[J]. Journal of Aircraft199835(5): 769-775.
19 ABDOL-HAMID K S. Assessments of k-kL turbulence model based on menter’s modification to rotta’s two-equation model[J]. International Journal of Aerospace Engineering20152015: 987682.1.
20 ABDOL-HAMID K. Assessments of a Turbulence Model based on Menter’s Modification to Rotta’s Two-Equation Model[C]∥Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: AIAA2013-341.
21 ZHANG H J, ZOU Z P, LI Y, et al. Conjugate heat transfer investigations of turbine vane based on transition models[J]. Chinese Journal of Aeronautics201326(4): 890-897.
22 原泽, 郑群, 岳国强, 等. 低负荷和高负荷压气机叶栅气动性能的实验和数值模拟[J]. 航空动力学报202136(4): 724-733.
  YUAN Z, ZHENG Q, YUE G Q, et al. Experiment and numerical simulation on aerodynamic performance of low-loaded and highly-loaded compressor cascades[J]. Journal of Aerospace Power202136(4): 724-733 (in Chinese).
23 李帝辰, 魏闯, 张铁军, 等. 湍流度对低雷诺数翼型气动特性的影响研究[J]. 航空科学技术202233(2): 12-21.
  LI D C, WEI C, ZHANG T J, et al. Influence of turbulence intensity on aerodynamic characteristics of low Reynolds number airfoil[J]. Aeronautical Science & Technology202233(2): 12-21 (in Chinese).
24 LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects[C]∥45th AIAA Fluid Dynamics Conference. Reston: AIAA, 2015: 2474.
25 ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: AIAA2017-2409.
26 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报202142(9): 625711.
  XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625711 (in Chinese).
27 XIANG X H, CHEN J Q, YUAN X X, et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology2022122: 107327.
28 杨体浩, 王一雯, 王雨桐, 等. 基于离散伴随的层流翼优化设计方法[J]. 航空学报202243(12): 126132.
  YANG T H, WANG Y W, WANG Y T, et al. Discrete adjoint-based optimization approach for laminar flow wings[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126132 (in Chinese).
29 RADEZTSKY R H, REIBERT M S, SARIC W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal199937(11): 1370-1377.
30 KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[C]∥Proceedings of the 40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010: AIAA2010-4292.
31 JULIANO T J. Instability and transition on the HIFiRE-5 in a Mach-6 Quiet Tunnel[D]. West Lafayette: Purdue University Main Campus, 2010: 1-171.
32 JULIANO T J, POGGIE J, PORTER K, et al. HIFiRE-5b heat flux and boundary-layer transition[C]∥Proceedings of the 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017: AIAA2017-3134.
33 陈久芬, 徐洋, 蒋万秋 等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学, doi: 10.11729/syltlx20220030shu .
  CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220030shu (in Chinese).
34 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学202034(1): 60-66.
  CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics202034(1): 60-66 (in Chinese).
35 史亚云, 白俊强, 华俊, 等. 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报201637(3): 780-789.
  SHI Y Y, BAI J Q, HUA J, et al. Study and modification of cross-flow induced transition model based on local variables[J]. Acta Aeronautica et Astronautica Sinica201637(3): 780-789 (in Chinese).
36 张红军, 李海群, 康宏琳, 等. 可压缩修正γ-Reθ 模型在高超声速边界层转捩预测中的应用与验证研究[J]. 空天技术2022(4): 40-48.
  ZHANG H J, LI H Q, KANG H L, et al. Research on application and validation of compressibility correction γ-Reθ model for hypersonic boundary transition prediction[J]. Aerospace Technology2022(4): 40-48 (in Chinese).
37 HOU Y, WRAY T, AGARWAL R K. Application of SST k-ω transition model to flow past smooth and rough airfoils[C]∥Proceedings of the 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017: AIAA2017-3637.
38 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报202142(6): 124317.
  CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica202142(6): 124317 (in Chinese).
39 朱志斌, 冯峰, 沈清. 高超声速椭圆锥边界层横流转捩特性大涡模拟[J]. 气体物理20227(3): 60-72.
  ZHU Z B, FENG F, SHEN Q. Large eddy simulation of crossflow transition characteristics in hypersonic elliptic cone boundary layer[J]. Physics of Gases20227(3): 60-72 (in Chinese).
40 张绍龙. 高超声速2: 1椭圆锥边界层的稳定性特征及扰动演化[D]. 天津: 天津大学, 2016.
  ZHANG S L. The instability and wave propagation in the hypersonic 2: 1 elliptic cone boundary layer[D].Tianjin: Tianjin University, 2016 (in Chinese).
41 BORG M, KIMMEL R, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel[C]∥Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
42 PAREDES P, GOSSE R, THEOFILIS V, et al. Linear modal instabilities of hypersonic flow over an elliptic cone[J]. Journal of Fluid Mechanics2016804: 442-466.
43 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报202243(7): 125685.
  ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica202243(7): 125685 (in Chinese).
44 陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学202337(6): 51-60.
  CHEN J F, XU Y, XU X B, et al. Experimental study on fluctuating pressure in hypersonic boundary layer with 7 sharp cone[J]. Journal of Experiments in Fluid Mechanics202337(6): 51-60 (in Chinese).
45 QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics20213(1): 31.
Outlines

/