Fluid Mechanics and Flight Mechanics

Full flow path performance design method for wide range scramjet based on equivalent thermodynamic process

  • Bing WAN ,
  • Jun CHEN ,
  • Hanchen BAI
Expand
  • Science and Technology on Scramjet Laboratory,Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China

Received date: 2023-03-29

  Revised date: 2023-04-17

  Accepted date: 2023-08-07

  Online published: 2023-08-18

Supported by

National Level Project

Abstract

The analysis method based on equivalent thermodynamic process is extended to establish a full flow path design method for wide range scramjets. This method is subsequently applied to the design of the full flow path for a wide range scramjet with a variable geometry inlet. Effects of adjustment and combustor size on the engine performance are analyzed. The results show that the inlet mass flow rate has a larger influence weight on thrust than on specific impulse in the range of Mach number 2.0-3.5; thus, best efforts should be made to increase the inlet air flux at the low speed stage. The second compression angle has a larger influence on the engine specific impulse and thrust than the third compression angle. For the given examples in this paper, engine performance benefits from smaller angles of the second compression ramp. The inlet configuration with the optimal thrust is different from that with the optimal specific impulse. The corresponding combustor area also varies dramatically with the flight Mach number if the optimal performance is desired, with higher velocity requiring smaller area. If the high thrust at a lower speed is wanted, the penalties of combustor dimension must be paid at a higher speed, meaning more drag and weight. If high thrust at a higher speed is wanted, the penalties of thrust at lower speeds must be paid, meaning more acceleration time and fuel consumption. This method can rapidly find the flow path scheme with the optimal thrust or specific impulse by comparing massive options, therefore providing strong support for the high performance scramjet preliminary design.

Cite this article

Bing WAN , Jun CHEN , Hanchen BAI . Full flow path performance design method for wide range scramjet based on equivalent thermodynamic process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 128757 -128757 . DOI: 10.7527/S1000-6893.2023.28757

References

1 WEINGERTNER S. Sanger-the reference concept of the German hypersonic technology program: AIAA-1993-5161[R]. Reston: AIAA,1993.
2 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences201684: 1-28.
3 FUCHS R P, CHAPUT A J, FROST D E, et al. Why and whither hypersonics research in the US Air Force: SAB-TR-00-03[R]. Washington, D. C.: US Air Force Scientific Advisory Board, 2000.
4 刘晓伟, 何国强, 刘佩进. 一种RBCC二元进气道变几何方案研究[J]. 固体火箭技术201033(4): 409-413, 418.
  LIU X W, HE G Q, LIU P J. Investigation of a RBCC 2D variable-geometry inlet scheme[J]. Journal of Solid Rocket Technology201033(4): 409-413, 418 (in Chinese).
5 刘晓伟, 李永洲, 张蒙正, 等. RBCC进气道双流道变几何方案研究[J]. 航空动力学报201631(11): 2659-2664.
  LIU X W, LI Y Z, ZHANG M Z, et al. Investigation of variable geometry RBCC inlet with double passage[J]. Journal of Aerospace Power201631(11): 2659-2664 (in Chinese).
6 金志光, 张堃元, 陈卫明, 等. 高超声速二元变几何进气道气动方案设计与调节规律研究[J]. 航空学报201334(4): 779-786.
  JIN Z G, ZHANG K Y, CHEN W M, et al. Design and regulation of two-dimensional variable geometry hypersonic inlets[J]. Acta Aeronautica et Astronautica Sinica201334(4): 779-786 (in Chinese).
7 张林, 张堃元, 金志光, 等. 高超声速二元进气道顶板移动变几何方案数值模拟[J]. 航空学报201233(10): 1800-1808.
  ZHANG L, ZHANG K Y, JIN Z G, et al. Numerical simulation of a variable geometry hypersonic 2D inlet designed with compressible ramp movable[J]. Acta Aeronautica et Astronautica Sinica201233(10): 1800-1808 (in Chinese).
8 李永洲, 刘晓伟, 张蒙正, 等. 马赫数2.5~7.0的二元变几何进气道设计[J]. 火箭推进201541(5): 17-22.
  LI Y Z, LIU X W, ZHANG M Z, et al. Design of a two dimensional variable geometry inlet with Mach number 2.5-7.0[J]. Journal of Rocket Propulsion201541(5): 17-22 (in Chinese).
9 张正泽, 刘佩进, 秦飞, 等. RBCC进气道喉道及唇口调节数值研究[J]. 推进技术201839(5): 1003-1013.
  ZHANG Z Z, LIU P J, QIN F, et al. Numerical investigations on throat and lip adjustments of RBCC inlet[J]. Journal of Propulsion Technology201839(5): 1003-1013 (in Chinese).
10 王翼, 徐尚成, 周芸帆, 等. 多目标考虑下高超声速进气道唇口角参数化设计与分析[J]. 航空学报202243(8): 125698.
  WANG Y, XU S C, ZHOU Y F, et al. Multi-objective design and analysis of cowl lip angle for hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125698 (in Chinese).
11 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报201536(1): 274-288.
  ZHANG K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica201536(1): 274-288 (in Chinese).
12 郑小梅, 吕浩宇, 徐大军, 等. MHD加速器模式磁控进气道的优化设计[J]. 航空学报201031(2): 223-230.
  ZHENG X M, LYU H Y, XU D J, et al. Optimization of accelerator mode MHD controlled inlet[J]. Acta Aeronautica et Astronautica Sinica201031(2): 223-230 (in Chinese).
13 王建勇, 谢旅荣, 赵昊, 等. 一种改善高超声速进气道自起动能力的流场控制研究[J]. 航空学报201536(5): 1401-1410.
  WANG J Y, XIE L Y, ZHAO H, et al. A flow-control conception of improving self-start performance of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica201536(5): 1401-1410 (in Chinese).
14 SULLINS G A, WALTRUP P J. A comparison of scramjet integral analysis techniques[J]. Journal of Propulsion and Power19851(2): 156-158.
15 朱也夫 B C, 马卡伦 B С. 冲压和火箭: 冲压发动机原理[M]. 刘兴洲,译. 北京: 国防工业出版社, 1975.
  ЗУЕВ В С, МАКАРОН В С. Ramjet and rocket: Ramjet principle[M]. LIU X Z, translated. Beijing: National Defense Industry Press, 1975 (in Chinese).
16 HEISER W H, PRATT D T, DELEY D H, et al. Hypersonic airbreathing propulsion[M]. Reston:AIAA, 1994.
17 BILLIG F S, SULLINS G A. Optimization of combustor-isolator in dual-mode ram scramjets: AIAA-1993-5154[R]. Reston:AIAA, 1993.
18 HEISER W H, PRATT D T. Aerothermodynamics of the dual-mode combustion system[M]. Reston: AIAA, 2001.
19 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016.
  CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4-7[D]. Mianyang: CARDC, 2016 (in Chinese).
20 SMART M K. “Scramjet inlets” in high speed propulsion: Engine design-integration and thermal management: RTO-EN-AVT-185[R]. Belgium: von Karman Institute, 2010.
21 白菡尘, 陈军. 双模态冲压发动机等效热力过程与性能关系原理[M]. 北京: 国防工业出版社, 2018.
  BAI H C, CHEN J. Connection principle between dual-mode scramjet performance and equivalent thermal-dynamic process[M]. Beijing: National Defense Industry Press, 2018 (in Chinese).
22 SIEBENHAAR A, BULMAN M J, BONNAR D K. The role of the strutjet engine in new global and space markets: IAF-98-S.5.04[R]. Washington, D. C.: NASA, 1998.
23 MERLIN P. Design and development of the blackbird: Challenges and lessons learned: AIAA-2009-1522[R]. Reston: AIAA, 2009
24 GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles: AIAA-2008-2682[R]. Reston: AIAA, 2008.
25 万冰, 白菡尘, 陈军. 可调混压进气道超额定工况黏性作用理解[J]. 推进技术201940(9): 2012-2021.
  WAN B, BAI H C, CHEN J. Understanding on viscous effect for a variable-geometry mixed-compression inlet at over-speed regime[J]. Journal of Propulsion Technology201940(9): 2012-2021 (in Chinese).
26 朱克罗, 霍夫曼. 气体动力学[M]. 王汝涌, 吴宗真, 吴宗善, 等, 译. 北京: 国防工业出版社, 1984.
  ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. WANG R S, WU Z Z, WU Z S, et al, translated. Beijing: National Defense Industry Press, 1984 (in Chinese).
27 黎崎. 二元高超进气道入口段设计参数与气动喉道特征关系研究[D]. 绵阳: 中国空气动力研究与发展中心,2017.
  LI Q. Effect of entrance section design parameters on aero-throat in a 2D hypersonic inlet[D]. Mianyang: CARDC,2017 (in Chinese).
28 万冰. Ma3可调进气道及火箭射流影响的流场演化[D]. 绵阳: 中国空气动力研究与发展中心, 2019.
  WAN B. The flow structure evolvement in a Ma3 variable-geometry supersonic intake with the effect of rocket jet[D]. Mianyang: CARDC, 2019 (in Chinese).
29 MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design, second edition[M]. Reston: AIAA, 2002.
Outlines

/