Material Engineering and Mechanical Manufacturing

A multiscale mesh generation method for textile composite

  • Ying MA ,
  • Ao CHEN ,
  • Congying DENG ,
  • Xiang CHEN ,
  • Sheng LU ,
  • Xianjun ZENG
Expand
  • 1.School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    2.Institute for Advanced Study,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
    3.The Green Aerotechnics Research Institute of Chongqing Jiaotong University,Chongqing 400074,China

Received date: 2023-06-15

  Revised date: 2023-07-17

  Accepted date: 2023-08-03

  Online published: 2023-08-11

Supported by

National Natural Science Foundation Youth Science Foundation of China(12002070);Natural Science Foundation of Chongqing(022NSCQ-MSX3803);Entrepreneurship and Innovation Project for Returned Overseas Personnel of Chongqing(cx2018126)

Abstract

In order to solve the problem of distortion, interference and sharpening caused by irregular cross-sectional yarn shape and material boundaries, a mesh method and unit splitting mechanism for textile composites based on fabric microstructure are proposed. In this method, the point cloud of fabric unit-cell micro-geometry is established by textile modeling software DFMA. Based on the structural point cloud, the yarn path and cross-sectional shape are calculated, implementing the modified Delaunay triangulation Alpha-shape algorithm. The yarn surface mesh is then placed in and match with the voxel mesh. The periodic boundary is introduced by grid mapping. Penetration and narrow gap between yarns are eliminated. Finally, split the voxel units to ensure the continuity of the material. The mesh models of plain weave, three-dimensional integral orthogonal and interlayer orthogonal composites are generated using the proposed method. The damage initiation and evolution criteria of textile composites were established based on the strain-continuous damage criterion and exponential decay model. The mechanical properties of plain weave composites under shear load are simulated. The results show that, compared with tetrahedral and hexahedral meshing methods, the proposed mesh method is capable of more accurately restoring the internal geometry of woven composite materials, dealing with sharp borders and complex surfaces in 2D and 3D fabric structures, and obtaining smooth yarn surfaces and clear cross-sectional shapes. The total number of meshes of the proposed mesh model is moderate, and the calculation time is only 15% of that of the TexGen model. The difference between simulation results and experimental results of shear modulus and strength is 8.93% and 3.73% respectively, which verifies the validity and reliability of the model.

Cite this article

Ying MA , Ao CHEN , Congying DENG , Xiang CHEN , Sheng LU , Xianjun ZENG . A multiscale mesh generation method for textile composite[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 429180 -429180 . DOI: 10.7527/S1000-6893.2023.29180

References

1 檀江涛, 蒋高明, 高哲, 等. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报202142(8): 185-193.
  TAN J T, JIANG G M, GAO Z, et al. Research progress of textile composite helmet shell against low-velocity impact[J]. Journal of Textile Research202142(8): 185-193 (in Chinese).
2 张旭东, 赵伟超, 张娟. 中型无人机复合材料机翼梁的成型工艺[J]. 宇航材料工艺202252(1): 94-97.
  ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite wing beam for medium unmanned aerial vehicle[J]. Aerospace Materials & Technology202252(1): 94-97 (in Chinese).
3 PATEL M, PARDHI B, CHOPARA S, et al. Lightweight composite materials for automotive—A review[J]. International Research Journal of Engineering and Technology20185(11): 41-47.
4 BOUSSU F. The use of warp interlock fabric inside textile composite protection against ballistic impact[J]. Textile Research Journal201181(4): 344-354.
5 孙洋, 黄建, 韩晨晨, 等. 二维与三维机织复合材料面内力学性能对比[J]. 航空学报202344(18): 428267.
  SUN Y, HUANG J, HAN C C, et al. The comparison of in-plane mechanical properties of 2D and 3D woven composites[J]. Acta Aeronautica et Astronautica Sinica202344(18): 428267 (in Chinese).
6 DAHALE M, NEALE G, LUPICINI R, et al. Effect of weave parameters on the mechanical properties of 3D woven glass composites[J]. Composite Structures2019223: 110947.
7 YING Z P, PAN X H, WU Z Y, et al. Effect of the micro-structure on the compressive failure behavior of three-dimensional orthogonal woven composites[J]. Composite Structures2022297: 115892.
8 张龙, 程俊, 邱荣凯, 等. 基于三维通用单胞方法的平纹编织复合材料多尺度损伤模拟方法[J]. 航空动力学报202035(11): 2275-2283.
  ZHANG L, CHENG J, QIU R K, et al. Multiscale damage simulation of plain weave composites based on 3D general method of cells[J]. Journal of Aerospace Power202035(11): 2275-2283 (in Chinese).
9 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报201936(6): 1364-1373.
  WANG Y N, ZENG A M, CHEN X W, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica201936(6): 1364-1373 (in Chinese).
10 赵巧莉, 侯玉亮, 刘泽仪, 等. 碳纤维平纹机织复合材料低速冲击及冲击后压缩性能多尺度分析[J]. 中国机械工程202132(14): 1732-1742.
  ZHAO Q L, HOU Y L, LIU Z Y, et al. Multi-scale analysis of LVI and CAI behaviors of plain woven carbon-fiber-reinforced composites[J]. China Mechanical Engineering202132(14): 1732-1742 (in Chinese).
11 GAO Z Y, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures2021263: 113685.
12 王宏越, 王兵, 方国东, 等. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报202344(9):227478
  WANG H Y, WANG B, FANG G D, et al. Digital element modelling and analysis of 2.5D woven shallow cross bending composites[J]. Acta Aeronautica et Astronautica Sinica202344(9):227478 (in Chinese).
13 LOMOV S V, PERIE G, IVANOV D S, et al. Modeling three-dimensional fabrics and three-dimensional reinforced composites: Challenges and solutions[J]. Textile Research Journal201181(1): 28-41.
14 VERPOEST I, LOMOV S V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology200565(15-16): 2563-2574.
15 LIN H, ZENG X S, SHERBURN M, et al. Automated geometric modelling of textile structures[J]. Textile Research Journal201282(16): 1689-1702.
16 VANAERSCHOT A, COX B N, LOMOV S V, et al. Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry[J]. Computer Methods in Applied Mechanics and Engineering2016310: 906-934.
17 HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on micro-CT aided geometric modeling[J]. Composites Part A: Applied Science and Manufacturing2019124: 105481.
18 WIJAYA W, ALI M A, UMER R, et al. An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[J]. Composites Part A: Applied Science and Manufacturing2019125: 105561.
19 YING Z P, HU X D, CHENG X Y, et al. Numerical investigation on the effect of tow tension on the geometry of three-dimensional orthogonally woven fabric[J]. Textile Research Journal201989(18): 3779-3791.
20 MAHADIK Y, HALLETT S R. Finite element modelling of tow geometry in 3D woven fabrics[J]. Composites Part A: Applied Science and Manufacturing201041(9): 1192-1200.
21 WUCHER B, HALLSTR?M S, DUMAS D, et al. Nonconformal mesh-based finite element strategy for 3D textile composites[J]. Journal of Composite Materials201751(16): 2315-2330.
22 HA M H, CAUVIN L, RASSINEUX A. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin[J]. Comptes Rendus Mécanique2016344(4-5): 267-283.
23 RASSINEUX A. Robust conformal adaptive meshing of complex textile composites unit cells[J]. Composite Structures2022279: 114740.
24 应志平. 三维正交机织物成形过程建模及其增强复合材料压缩性能研究[D]. 杭州: 浙江理工大学, 2018.
  YING Z P. Modelling of 3D orthogonal woven fabric weaving process and investigation of compression performance of its reinforced composite[D].Hangzhou: Zhejiang Sci-Tech University, 2018 (in Chinese).
25 FANG G D, CHEN C H, MENG S H, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement[J]. Journal of Composite Materials201953(4): 475-487.
26 MATVEEV M Y, BROWN L P, LONG A C. Efficient meshing technique for textile composites unit cells of arbitrary complexity[J]. Composite Structures2020254: 112757.
27 MAZUMDER A, WANG Y Q, YEN C F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry[J]. Composite Structures2020239: 112032.
28 WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology200161(2): 311-319.
29 马莹, 何田田, 陈翔, 等. 基于数字单元法的三维正交织物 微观几何结构建模[J]. 纺织学报202041(7): 59-66.
  MA Y, HE T T, CHEN X, et al. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach[J]. Journal of Textile Research202041(7): 59-66 (in Chinese).
30 GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests[J]. Computational Materials Science200017(1): 7-20.
31 OLIVIER D, SYLVAIN P, MONIQUE T. Walking in a triangulation[J]. International Journal of Foundations of Computer Science200213: 181-199.
32 EDELSBRUNNER H, KIRKPATRICK D, SEIDEL R. On the shape of a set of points in the plane[J]. IEEE Transactions on Information Theory198329(4): 551-559.
33 GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures2014118: 284-293.
34 ZENG Q L, SUN L J, GE J R, et al. Damage characterization and numerical simulation of shear experiment of plain woven glass-fiber reinforced composites based on 3D geometric reconstruction[J]. Composite Structures2020233: 111746.
35 LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures200673(2): 221-228.
36 QING H, MISHNAEVSKY L. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms[J]. Computational Materials Science201050(2): 479-486.
37 OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenisation[J]. Engineering with Computers201935(2): 567-577.
Outlines

/