Electronics and Electrical Engineering and Control

Distributed relative positioning of aircraft group based on path⁃sum algorithm

  • Weiqing LAI ,
  • Jiuqing WAN
Expand
  • School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China

Received date: 2023-03-22

  Revised date: 2023-05-05

  Accepted date: 2023-07-27

  Online published: 2023-08-04

Supported by

National Natural Foundation of China(61873015)

Abstract

According to the inertial measurement of each node in the aircraft group and the relative distance measurement given by the data link between nodes, the relative positioning including the estimation of the relative position and relative attitude between node pairs can be realized by using the centralized Kalman filter. The centralized algorithm gathers all the data in the group into the central node for centralized processing, and the scalability and reliability of the system are restricted. The distributed relative positioning algorithm such as belief propagation can realize global estimation of the relative position and relative attitude through the processing of local information by each node of the cluster and the information interaction between adjacent nodes. However, in the problem of group relative positioning, the data link topology contains a large number of ring structures, and the belief propagation algorithm has a convergence problem in such case. This paper proposes a distributed exact inference method for relative positioning, which can be applied to any group topology. Under the Gaussian standard and canonical descriptions, the distributed time update and measurement update algorithms for the error states of each node are designed. The distributed algorithms for standard and normative parameters conversion are given based on paths-sum principles. Under the linear Gaussian model assumption, the method in this paper is equivalent to the centralized Kalman filter, which can achieve the optimal estimation of relative positioning. A distributed approximate inference algorithm is proposed based on group decomposition to improve the speed of the algorithm. Results on the six-degree-of-freedom long-duration simulation data show that the relative positioning accuracy of the distributed approximate inference based on the path-sum is close to that of the centralized Kalman filter, and significantly outperforms the existing distributed Gaussian belief propagation algorithm.

Cite this article

Weiqing LAI , Jiuqing WAN . Distributed relative positioning of aircraft group based on path⁃sum algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 328735 -328735 . DOI: 10.7527/S1000-6893.2023.28735

References

1 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报202243(10): 527570.
  XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527570 (in Chinese).
2 冯培德, 谢淑香, 张京娟. 机群组网定位的一种新途径[J]. 北京航空航天大学学报200632(11): 1263-1267.
  FENG P D, XIE S X, ZHANG J J. New approach for swarming aircraft positioning via network information[J]. Journal of Beijing University of Aeronautics and Astronautics200632(11): 1263-1267 (in Chinese).
3 EDWARDS K L. Air?to?ground targeting—UAVs, data links and interoperability (project Extendor)[J]. The Aeronautical Journal (1968), 2004108: 493-504.
4 李宏智. 战术数据链的发展与作战应用[J]. 舰船电子工程201030(4): 1-5.
  LI H Z. Development and operational application of tactical data links[J]. Ship Electronic Engineering201030(4): 1-5 (in Chinese).
5 INDIVERI G, PARLANGELI G. Further results on the observability analysis and observer design for single range localization in 3D[DB/OL]. arXiv preprint: 1308.0517, 2013.
6 DE PALMA D, INDIVERI G, PARLANGELI G. Multi-vehicle relative localization based on single range measurements[J]. IFAC-PapersOnLine201548(5): 17-22.
7 郝菁, 蔚保国, 何成龙. 基于惯导/数据链的动态相对定位方法[J]. 计算机测量与控制201826(10): 191-195.
  HAO J, YU B G, HE C L. Dynamic relative positioning method based on inertial navigation and data link[J]. Computer Measurement & Control201826(10): 191-195 (in Chinese).
8 晏超然, 黄雪梅, 张康. 基于惯导/数据链测距的相对导航方法研究[J]. 计算机仿真202037(5): 55-60, 109.
  YAN C R, HUANG X M, ZHANG K. Relative navigation based on inertial navigation/data link ranging[J]. Computer Simulation202037(5): 55-60, 109 (in Chinese).
9 张京娟, 雷昊东, 王学运, 等. 基于飞行器三维组网测距信息的导航误差估计技术研究[J]. 空天防御20203(3): 124-130.
  ZHANG J J, LEI H D, WANG X Y, et al. Research on navigation error estimation technology based on distance measurement information of aircraft three-dimensional network[J]. Air & Space Defense20203(3): 124-130 (in Chinese).
10 HUFF J E. Absolute and relative navigation of an sUAS swarm using integrated GNSS, inertial and range radios[D]. Ohio: Ohio University, 2018: 43-48.
11 钟日进, 陈琪锋. 利用集群内测距和对目标测向的协同定位方法[J]. 航空学报202041(S1): 723768.
  ZHONG R J, CHEN Q F. Cooperative positioning method using distance measurement within a cluster and direction finding of a target[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723768 (in Chinese).
12 牛皓飞, 蔡庆中, 李健, 等. 基于图优化的通信受限环境下协同导航方法[J]. 航空学报202344(11): 327342.
  NIU H F, CAI Q Z, LI J, et al. Method for cooperative navigation in constrained environment based on graph optimization[J]. Acta Aeronautica et Astronautica Sinica202344(11): 327342 (in Chinese).
13 PEARL J. Probabilistic reasoning in intelligent systems - networks of plausible inference[M]. San Francisco: Morgan Kaufmann, 1988.
14 PEDERSEN C, PEDERSEN T, FLEURY B H. A variational message passing algorithm for sensor self-localization in wireless networks[C]∥ 2011 IEEE International Symposium on Information Theory Proceedings. Piscataway: IEEE Press, 2011: 2158-2162.
15 WANG S C, LUO F, JING X J, et al. Low-complexity message-passing cooperative localization in wireless sensor networks[J]. IEEE Communications Letters201721(9): 2081-2084.
16 IHLER A T, FISHER J W, MOSES R L, et al. Nonparametric belief propagation for self-localization of sensor networks[J]. IEEE Journal on Selected Areas in Communications200523(4): 809-819.
17 WYMEERSCH H, FERNER U, WIN M Z. Cooperative Bayesian self-tracking for wireless networks[J]. IEEE Communications Letters200812(7): 505-507.
18 WYMEERSCH H, LIEN J, WIN M Z. Cooperative localization in wireless networks[J]. Proceedings of the IEEE200997(2): 427-450.
19 CACERES M A, PENNA F, WYMEERSCH H, et al. Hybrid cooperative positioning based on distributed belief propagation[J]. IEEE Journal on Selected Areas in Communications201129(10): 1948-1958.
20 MEYER F, HLINKA O, HLAWATSCH F. Sigma point belief propagation[J]. IEEE Signal Processing Letters201421(2): 145-149.
21 KIM H, CHOI S W, KIM S. Connectivity information-aided belief propagation for cooperative localization[J]. IEEE Wireless Communications Letters20187(6): 1010-1013.
22 NASERI H, KOIVUNEN V. A Bayesian algorithm for distributed network localization using distance and direction data[J]. IEEE Transactions on Signal and Information Processing Over Networks20195(2): 290-304.
23 万九卿, 布少聪, 钟丽萍. 基于混合动态信念传播的多无人机协同定位算法[J]. 北京航空航天大学学报201642(5): 934-944.
  WAN J Q, BU S C, ZHONG L P. Cooperative localization algorithm of multi-UAVs based on dynamic hybrid belief propagation[J]. Journal of Beijing University of Aeronautics and Astronautics201642(5): 934-944 (in Chinese).
24 BICKSON D. Gaussian belief propagation: Theory and aplication[DB/OL]. arXiv preprint: 0811.2518, 2008.
25 WU N, LI B, WANG H, et al. Distributed cooperative localization based on Gaussian message passing on factor graph in wireless networks[J]. Science China Information Sciences201558(4): 1-15.
26 LI B, WU N, WANG H, et al. Gaussian message passing-based cooperative localization on factor graph in wireless networks[J]. Signal Processing2015111: 1-12.
27 LI B, WU N, WU Y C, et al. Convergence-guaranteed parametric Bayesian distributed cooperative localization[J]. IEEE Transactions on Wireless Communications202221(10): 8179-8192.
28 GARCíA-FERNáNDEZ á F, SVENSSON L, S?RKK? S. Cooperative localization using posterior linearization belief propagation[J]. IEEE Transactions on Vehicular Technology201867(1): 832-836.
29 MURPHY K, WEISS Y, JORDAN M I. Loopy belief propagation for approximate inference: An empirical study[DB/OL]. arXiv preprint: 1301.6725, 2013.
30 WEISS Y, FREEMAN W T. Correctness of belief propagation in Gaussian graphical models of arbitrary topology[J]. Neural Computation200113(10): 2173-2200.
31 WAINWRIGHT M J, JAAKKOLA T S, WILLSKY A S. Tree-based reparameterization framework for analysis of sum-product and related algorithms[J]. IEEE Transactions on Information Theory200349(5): 1120-1146.
32 MALIOUTOV D M, JOHNSON J K, WILLSKY A S. Walk-sums and belief propagation in Gaussian graphical models[J]. Journal of Machine Learning Research20067: 2031-2064.
33 SU Q L, WU Y C. On convergence conditions of Gaussian belief propagation[J]. IEEE Transactions on Signal Processing201563(5): 1144-1155.
34 LI B, WU Y C. Convergence of Gaussian belief propagation under general pairwise factorization: Connecting Gaussian MRF with pairwise linear Gaussian model[J]. Journal of Machine Learning Research201920:1-30.
35 DU J, MA S D, WU Y C, et al. Convergence analysis of distributed inference with vector-valued Gaussian belief propagation[DB/OL]. arXiv preprint: 1611.02010, 2016.
36 FRANCOIS KAMPER. On the Convergence of Gaussian Belief Propagation with Nodes of Arbitrary Size[J]. Journal of Machine Learning Research201920(165):1-37.
37 GISCARD P L, THWAITE S J, JAKSCH D. Evaluating matrix functions by resummations on graphs: The method of path-sums[J]. SIAM Journal on Matrix Analysis and Applications201334(2): 445-469.
38 马红皎, 吴华兵, 李梦, 等. 一种双向测距与时间同步系统的设计与分析[J]. 时间频率学报201437(1): 18-24.
  MA H J, WU H B, LI M, et al. Design and analysis of system of dual ranging and time synchronization[J]. Journal of Time and Frequency201437(1): 18-24 (in Chinese).
39 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019.
  YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi’an: Northwestern Polytechnical University Press, 2019 (in Chinese).
40 Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to algorithms massachusetts Institute of Technology[J]. Boston: Massachusetts Institute of Technology, 2009.
41 SOLà J. Quaternion kinematics for the error-state Kalman filter[DB/OL]. arXiv preprint: 1711.02508, 2017.
Outlines

/