Solid Mechanics and Vehicle Conceptual Design

A dynamic evaluation method for mission safety of missile equipment based on hierarchical safety control structure

  • Boqing YAO ,
  • Jiayu CHEN ,
  • Changchao GU ,
  • Qinhua LU ,
  • Xuhang WANG ,
  • Hongjuan GE
Expand
  • 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    1.China Academy of Launch Vehicle Technology,Beijing 100076,China

Received date: 2023-04-11

  Revised date: 2023-06-08

  Accepted date: 2023-07-20

  Online published: 2023-07-28

Abstract

The multi-mission environment and complex working conditions of long-term storage put forward strict requirements on the effective risk suppression and accurate safety evaluation of missile equipment. However, missile equipment is a typical man-machine-environment coupling complex system. Traditional safety analysis and evaluation methods cannot meet the requirements of its dynamic change and accurate quantification. Therefore, this paper proposes a safety dynamic evaluation method for missile equipment based on hierarchical safety control structure model to realize accurate safety evaluation under the long-term storage mission situation. First, according to the mission profile characteristics of missile equipment, a multi-view architecture model of process, mission, function, information and organization is constructed to achieve the accurate description of mission process and resource. Then, a hierarchical safety control structure model is proposed to determine the accident causal factors and accident chain of the targeted mission. Meanwhile, based on the mission characteristics of missile equipment, a human performance evaluation system is constructed for long-term storage in a complex and changeable environment, achieving accurate evaluation of human error rate under the man-machine-environment coupling condition. Moreover, a safety dynamic feedback evaluation method integrating STAMP and CREAM is proposed to obtain the accident rate of the missile mission through simulation. Finally, a case study of the missile test mission is performed. The proposed method specifies 6 typical accident chains of 3 categories of coordination, control and feedback in the man-machine-environment coupling scenario. Meanwhile, the accuracy of the accident rate is improved by 70. 08%, which verifies the effectiveness and superiority of the proposed method.

Cite this article

Boqing YAO , Jiayu CHEN , Changchao GU , Qinhua LU , Xuhang WANG , Hongjuan GE . A dynamic evaluation method for mission safety of missile equipment based on hierarchical safety control structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 228858 -228858 . DOI: 10.7527/S1000-6893.2023.28858

References

1 CAI Z, XIANG H, WANG P, et al. Missile storage lifetime assessment of multivariate degradation modeling under competition failure [J]. Systems Engineering & Electronics201840(5): 1183-1188.
2 CONG L H, XU T X, WANG Q, et al. Missile competing fault prediction based on degradation data and fault data[J]. Journal of Beijing University of Aeronautics and Astronautics201642: 522.
3 赵少刚. 复杂武器系统人因工程设计及HRA研究[D]. 西安: 西安电子科技大学, 2007: 28-29.
  ZHAO S G. Human factor engineering design and HRA research of complex weapon system[D].Xi’an: Xidian University, 2007: 28-29 (in Chinese) .
4 WU J F, YANG T, CAO X L. A typical failure mode and effects analysis for EMA used for UAV and guided missile[J]. Journal of Physics: Conference Series20211815(1): 012043.
5 YUAN J, LONG Y. The missile flight control system reliability analysis based on hybrid fault trees[C]∥2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Piscataway: IEEE Press, 2010: 158-160.
6 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报202041(6): 523436.
  HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523436 (in Chinese).
7 李晓磊, 赵廷弟. 基于模糊推理的舰载机进舰过程安全性仿真分析[J]. 航空学报201334(2): 325-333.
  LI X L, ZHAO T D. Carrier-based aircraft landing process safety simulation analysis based on fuzzy inference[J]. Acta Aeronautica et Astronautica Sinica201334(2): 325-333 (in Chinese).
8 黄耀华. 导弹作战流程Petri网建模及测试用例生成方法[J].弹箭与制导学报201939(5): 46-49.
  HUANG Y H. Petri net modeling and test case generation method of missile operation process [J]. Journal of Projectiles Rockets Missiles and Guidance201939(5): 46-49 (in Chinese).
9 GUO J, SHI L, ZHANG K F, et al. Dynamic fault tree analysis based fault diagnosis system of power transformer[C]∥Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2012: 3077-3081.
10 梁彦刚, 陈磊, 唐国金. 有限状态机在导弹防御系统分析中的应用[J]. 微计算机信息200723(19): 244-246.
  LIANG Y G, CHEN L, TANG G J. The application of FSM in missile defense system analysis [J]. Microcomput Information (China)200723(19): 244-246 (in Chinese).
11 HU J, LI J, ZHENG L. STAMP modeling and STPA safety analysis of aviation four stations gas support process [J]. Advances in Aeronautical Science and Engineering20178(4): 408-415.
12 ALLISON C K, REVELL K M, SEARS R, et al. Systems Theoretic Accident Model and Process (STAMP) safety modelling applied to an aircraft rapid decompression event[J]. Safety Science201798: 159-166.
13 郑磊, 胡剑波. 基于STAMP/STPA的机轮刹车系统安全性分析[J]. 航空学报201738(1): 320144.
  ZHENG L, HU J B. Safety analysis of wheel brake system based on STAMP/STPA[J]. Acta Aeronautica et Astronautica Sinica201738(1): 320144 (in Chinese).
14 张宏宏, 甘旭升, 孙静娟, 等. 基于STPA-TOPAZ的低空无人机冲突解脱安全性分析[J]. 航空学报202243(7): 325354.
  ZHANG H H, GAN X S, SUN J J, et al. Analysis of low altitude UAV conflict resolution safety based on STPA-TOPAZ[J]. Acta Aeronautica et Astronautica Sinica202243(7): 325354 (in Chinese).
15 赵青松, 杨克巍, 陈英武. 体系工程与体系结构建模方法与技术[M]. 北京: 国防工业出版社, 2013.
  ZHAO Q S, YANG K W, CHEN Y W. System of systems engineering and system of systems modeling[M]. Beijing: National Defense Industry Press, 2013 (in Chinese).
16 李新明, 杨凡德. 电子信息装备体系概论[M]. 北京: 国防工业出版社, 2014.
  LI X M, YANG F D. Introduction to electronic information equipment system[M]. Beijing: National Defense Industry Press, 2014 (in Chinese).
17 XU T X, ZHEN W. Research on missile equipments’ logistics support process modeling and simulation by ARIS[C]∥2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering. Piscataway: IEEE Press, 2011: 718-723.
18 NIE Z, CHEN Z, MA X, et al. Safety analysis of weapon system based on multi-view modeling [J]. Transactions of Beijing Institute of Technology202242(4): 437-446.
19 高佳, 沈祖培, 何旭洪. 第二代人的可靠性分析方法的进展[J]. 中国安全科学学报200414(2): 15-19.
  GAO J, SHEN Z P, HE X H. Progress in the second generation of HRA [J]. China Safety Science200414(2): 15-19 (in Chinese).
20 CALHOUN J, SAVOIE C, RANDOLPH-GIPS M, et al. Human reliability analysis in spaceflight applications[J]. Quality and Reliability Engineering International201329(6): 869-882.
21 郭庆, 关德明. 民机维修任务分析的人因可靠性预测模型研究[J]. 航空学报202344(16): 228051.
  GUO Q, GUAN D M. Human factors reliability prediction model for civil aircraft maintenance task analysis[J]. Acta Aeronautica et Astronautica Sinica202344(16):228051 (in Chinese).
22 ZHOU Q J, WONG Y D, LOH H S, et al. A fuzzy and Bayesian network CREAM model for human reliability analysis-The case of tanker shipping[J]. Safety Science2018105: 149-157.
23 李俊,胡剑波,王应洋,等. 导弹攻击过程的STAMP/STPA任务失效及仿真研究[J]. 弹箭与制导学报201939(3): 53-57, 68.
  LI J, HU J B, WANG Y Y, et al. Missile attack process STAMP/STPA mission failure and simulation research [J]. Journal of Projectiles Rockets Missiles and Guidance201939(3): 53-57, 68 (in Chinese).
24 胡剑波, 郑磊. 综合火/飞/推控制系统复杂任务的STAMP建模和STPA分析[J]. 航空工程进展20167(3): 309-315.
  HU J B, ZHENG L. STAMP modeling and STPA analysis for complex tasks of integrated fire, flying and propulsion control systems[J]. Advances in Aeronautical Science and Engineering20167(3): 309-315 (in Chinese).
25 STANTON N A, HARVEY C, ALLISON C K. Systems Theoretic Accident Model and Process (STAMP) applied to a Royal Navy Hawk jet missile simulation exercise[J]. Safety Science2019113: 461-471.
26 WANG K, GUO L, LANG J. A security index system of security risk assessment behavior based on STAMP model [J]. Computer Engineering and Science202244(8): 1372-81.
27 王黎静, 王彦龙. 人的可靠性分析: 人因差错风险评估与控制[M]. 北京: 航空工业出版社, 2015.
  WANG L J, WANG Y L. Human reliability analysis: Risk assessment and control of human error[M]. Beijing: Aviation Industry Press, 2015 (in Chinese).
28 郑磊, 胡剑波. 基于STAMP/STPA的机轮刹车系统安全性分析[J]. 航空学报201738(1): 320144.
  ZHENG L, HU J B. Safety analysis of wheel brake system based on STAMP/STPA [J]. Acta Aeronautica et Astronautica Sinica201738(1): 320144 (in Chinese).
29 王琳. 基于STPA的复杂机载系统安全性分析方法研究[D]. 南京: 南京航空航天大学, 2017: 5-11.
  WANG L. Research on security analysis method of complex airborne system based on STPA[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 5-11 (in Chinese) .
30 何旭洪, 黄祥瑞. 工业系统中人的可靠性分析: 原理、方法与应用[M]. 北京: 清华大学出版社, 2007.
  HE X H, HUANG X R. Human reliability analysis in industrial systems: Principles, methods and applications[M]. Beijing: Tsinghua University Press, 2007 (in Chinese).
31 中国人民解放军总装备部. 战略导弹安全规则: [S]. 北京: 中国人民解放军总装备部, 2000.
  Chinese People’s Liberation Army General Armament Department. Safety regulations for strategic missile: [S]. Beijing: Chinese People’s Liberation Army General Armament Department, 2000 (in Chinese).
32 中国人民解放军总装备部. 两级地地固体战略导弹测试发射规程: [S]. 北京: 中国人民解放军总装备部, 2009.
  Chinese People’s Liberation Army General Armament Department. Rules for testing and launching of two-stage solid ground-to-ground strategic missiles: [S]. Beijing: Chinese People’s Liberation Army General Armament Department, 2009 (in Chinese).
33 中国航天标准化研究所. 导弹贮存可靠性设计技术指南: [S]. 北京: 中国航天标准化研究所, 2003.
  China Astronautics Standards Institute. Guideline of design technology for missile storage reliability: [S]. Beijing: China Astronautics Standards Institute, 2003 (in Chinese).
34 荣灏. 导弹贮存使用过程安全性动态评估方法研究[D].北京: 北京航空航天大学, 2013.
  RONG H. Dynamic safety assessment method of missile operating process [D]. Beijing: Beihang University,2013 (in Chinese).
35 孙有朝, 张永进, 李龙彪. 可靠性原理与方法-下册[M]. 北京: 科学出版社, 2016.
  SUN Y C, ZHANG Y J, LI L B. Principles and methods of reliability-volume II[M]. Beijing: Science Press, 2016 (in Chinese).
Outlines

/