ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Extension of Eulerian wall film model in icing simulation
Received date: 2023-07-10
Revised date: 2023-07-16
Accepted date: 2023-07-17
Online published: 2023-07-21
Supported by
National Natural Science Foundation of China(12072213);National Science and Technology Major Project(J2019-III-0010-0054);National Numerical Windtunnel Project(NNW2019-JT01-023)
In icing thermodynamic models, while the description of heat transfer and phase change is complete, the description of water film flow is usually simplified. To solve this problem, the calculation-correction method is used to expand the ability of Eulerian Wall Film (EWF) model in icing simulation, and the characteristics of the extended model in numerical schemes and icing prediction are studied. Calculations show that the icing rate gradually stabilizes over time. During the calculation, the second-order implicit method and the second-order upwind scheme show better stability, and the time-step and temporal/spatial differencing scheme have little effect on the calculation accuracy. In terms of icing prediction, the extended model has more advantages for the icing prediction of NACA0015 airfoil, compared with LEWICE software; the extended model is closer to the experimental results in the prediction of ice horn at relatively high speeds, compared with the icing model that simplifies the flow of the water film. In addition, the extended model also shows good adaptability in the icing simulation of the 30P30N airfoil and DPW aircraft.
Huajie XIONG , Yijing AN , Zhulong WU , Zhihong ZHOU . Extension of Eulerian wall film model in icing simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729287 -729287 . DOI: 10.7527/S1000-6893.2023.29287
1 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
2 | RUFF G, BERKOWITZ B. Users manual for the NASA lewis ice accretion prediction code (LEWICE): NASA-CR-185129[R]. Washington, D.C.: NASA, 1990. |
3 | BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4): 640-646. |
4 | HEDDE T, GUFFOND D. ONERA three-dimensional icing model[J]. AIAA Journal, 1995, 33(6): 1038-1045. |
5 | ZHANG H, WEN C, SU J W. A numerical study of droplet impingement for in-flight ice accretion prediction: V01AT12A002[R]. Washington, D.C.: ASME, 2016. |
6 | XU D D, WANG L W, XING Z W. Numerical simulation of the collection efficiency on aircraft ground icing[C]∥ Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. Piscataway: IEEE Press, 2011: 2408-2411. |
7 | MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. |
8 | WRIGHT W B, GENT R W, GUFFOND D. DRA/NASA/ONERA collaboration on icing research[R]. Washington, D.C.: NASA, 1997. |
9 | 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11): 2152-2158. |
YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2152-2158 (in Chinese). | |
10 | 曹广州, 吉洪湖, 斯仁. 迎风面三维积冰过程中水膜流动的计算方法[J]. 航空动力学报, 2015, 30(3): 677-685. |
CAO G Z, JI H H, SI R. Computational methodology of water film flow in three-dimensional ice accretion on upwind surface[J]. Journal of Aerospace Power, 2015, 30(3): 677-685 (in Chinese). | |
11 | BUCKNELL A, MCGILVRAY M, GILLESPIE D R H, et al. A thermodynamic model for ice crystal accretion in aircraft engines: EMM-C[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121270. |
12 | MYERS T G. Extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39: 211-218. |
13 | MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids, 2002, 14(8): 2788-2803. |
14 | BEAUGENDRE H, MORENCY F, HABASHI W G. Development of a second generation in-flight icing simulation code[J]. Journal of Fluids Engineering, 2006, 128(2): 378-387. |
15 | GORI G, ZOCCA M, GARABELLI M, et al. PoliMIce: A simulation framework for three-dimensional ice accretion[J]. Applied Mathematics and Computation, 2015, 267: 96-107. |
16 | GORI G, PARMA G, ZOCCA M, et al. Local solution to the unsteady stefan problem for in-flight ice accretion modeling[J]. Journal of Aircraft, 2018, 55(1): 251-262. |
17 | 雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121962. |
LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 121962 (in Chinese). | |
18 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 107-122 (in Chinese). | |
19 | DAI H, ZHU C L, ZHAO H Y, et al. A new ice accretion model for aircraft icing based on phase-field method[J]. Applied Sciences, 2021, 11(12): 5693. |
20 | DAI H, ZHU C X, ZHAO N, et al. An unsteady model for aircraft icing based on tightly-coupled method and phase-field method[J]. Aerospace, 2021, 8(12): 373. |
21 | SHEN X B, QI Z C, ZHAO W Z, et al. Numerical simulation of aircraft icing with an unsteady thermodynamic model considering the development of water film and ice layer[J]. International Journal of Aerospace Engineering, 2022, 2022: 1-18. |
22 | LI X, BAI J Q, HUA J, et al. A spongy icing model for aircraft icing[J]. Chinese Journal of Aeronautics, 2014, 27(1): 40-51. |
23 | 裘夔纲, 韩凤华. 飞机防冰系统[M]. 北京: 国防工业出版社, 2004: 166-167. |
QIU K G, HAN F H. The system of aircraft anti-icing[M]. Beijing: National Defense Industry Press, 2004: 166-167 (in Chinese). | |
24 | ANSYS. ANSYS Fluent theory guide[M]. Canonsburg: ANSYS Inc, 2019: 669-682. |
25 | STANTON D W, RUTLAND C J. Multi-dimensional modeling of thin liquid films and spray-wall interactions resulting from impinging sprays[J]. International Journal of Heat and Mass Transfer, 1998, 41(20): 3037-3054. |
26 | ANSYS, ANSYS FENSAP-ICE user manual[M]. Canonsburg: ANSYS Inc, 2019: 155-157. |
27 | KAKIMPA B, MORVAN H P, HIBBERD S. Solution strategies for thin film rimming flow modelling: V05CT15A026[R]. Montreal: ASME, 2015. |
28 | WRIGHT W. Validation results for lewice 3.0: NASA/CR-1999-208690[R]. Washington, D.C.: NASA, 2013. |
29 | 李延, 郭涛, 常红亮. 基于欧拉壁面液膜模型的三维热气防冰腔数值仿真[J]. 北京航空航天大学学报, 2018, 44(5): 959-966. |
LI Y, GUO T, CHANG H L. Numerical simulation of 3D hot-air anti-icing chamber based on Eulerian wall film model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 959-966 (in Chinese). |
/
〈 |
|
〉 |