Fluid Mechanics and Flight Mechanics

Smooth TENO nonlinear weighting for WCNS scheme

  • Wenchang WU ,
  • Yankai MA ,
  • Xingsi HAN ,
  • Yaobing MIN ,
  • Zhenguo YAN
Expand
  • 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.State Key Laboratory of Aerodynamics,Mianyang 621000,China
E-mail: minyb@126.com

Received date: 2023-05-29

  Revised date: 2023-06-29

  Accepted date: 2023-07-13

  Online published: 2023-07-14

Supported by

National Natural Science Foundation of China(92041001);Natural Science Foundation of Jiangsu Province(BK20200069);National Science and Technology Major Project (2017-Ⅲ-0005-0029, J2019-Ⅲ-0015-0059)

Abstract

Compressible turbulent flow widely exists in the aerospace field, and the coexistence of shock discontinuity and multi-scale turbulence in the flow field poses a challenge for high-precision numerical simulation. To improve the accuracy of complex turbulence simulation, in the framework of the Weighted Compact Nonlinear Scheme (WCNS), a WCNS-T scheme based on the Targeted Essentially Non-Oscillatory (TENO) weighting strategy is developed, and a smooth S-TENO nonlinear weighting method and its WCNS-ST scheme are further proposed from the perspectives of both numerical convergence and accuracy. The developed WCNS-ST scheme is tested for its ability to capture discontinuous and high-frequency waves through spectral analysis, one-dimensional Lax and Osher-Shu examples, and two-dimensional dual Mach reflection examples. Based on further numerical tests of steady laminar flow past a circular cylinder and unsteady self-adaptive turbulence eddy simulation of a 30P30N multi-element airfoil, the convergence characteristics of the original TENO weighting and the current S-TENO weighting in viscous complex flows, as well as their impact on numerical calculation results, are compared. The results show that the proposed S-TENO nonlinear weighting maintains the dispersion and dissipation characteristics of the original TENO nonlinear weighting and its ability to capture shock waves, significantly improving the problem of excessive nonlinear dissipation in WCNS-JS and WCNS-Z schemes; meanwhile, S-TENO nonlinear weighting significantly eases the convergence difficulties caused by weight discontinuity in the original TENO nonlinear weighting. The above results indicate that the proposed smooth S-TENO nonlinear weighting and its WCNS-ST scheme take into account both accuracy and convergence in numerical simulations of complex flow configurations, making them more suitable for complex engineering applications.

Cite this article

Wenchang WU , Yankai MA , Xingsi HAN , Yaobing MIN , Zhenguo YAN . Smooth TENO nonlinear weighting for WCNS scheme[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(8) : 129052 -129052 . DOI: 10.7527/S1000-6893.2023.29052

References

1 HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics198349 (3): 357-393.
2 BILLET G, LOUEDIN O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows[J]. Journal of Computational Physics2001170(1): 161-183.
3 KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD =3900[J]. Physics of Fluids200012(2): 403-417.
4 XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal201250(5): 1119-1136.
5 SCIACOVELLI L, PASSIATORE D, CINNELLA P, et al. Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations[J]. Computers & Fluids2021230: 105134.
6 WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods: Current status and perspective[J]. International Journal for Numerical Methods in Fluids201372(8): 811-845.
7 DONG Y D, DENG X G, XU D, et al. Reevaluation of high-order finite difference and finite volume algorithms with freestream preservation satisfied[J]. Computers & Fluids2017156: 343-352.
8 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics1996126(1): 202-228.
9 HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics1997131(1): 3-47.
10 BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics2008227(6): 3191-3211.
11 QIU J X, SHU C W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[J]. Journal of Computational Physics2002183(1): 187-209.
12 HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics2005207(2): 542-567.
13 ACKER F, DE R BORGES R B, COSTA B. An improved WENO-Z scheme[J]. Journal of Computational Physics2016313: 726-753.
14 LUO X, WU S P. An improved WENO-Z+ scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics2021445: 110608.
15 刘博, 李诗尧, 陈嘉禹, 等. 基于映射函数的新型五阶WENO格式[J]. 航空学报202243(12): 126155.
  LIU B, LI S Y, CHEN J Y, et al. New fifth order WENO scheme based on mapping functions[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126155 (in Chinese).
16 GEROLYMOS G A, SéNéCHAL D, VALLET I. Very-high-order WENO schemes [J]. Journal of Computational Physics2009228(23): 8481-8524.
17 JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics2010229(4): 1213-1237.
18 DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics2000165(1): 22-44.
19 DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics1997130(1): 77-91.
20 DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics2011230(4): 1100-1115.
21 DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics2013239: 90-111.
22 毛枚良, 姜屹, 闵耀兵, 等. 高阶精度有限差分方法几何守恒律研究进展[J]. 空气动力学学报202139(1): 157-167.
  MAO M L, JIANG Y, MIN Y B, et al. A survey of geometry conservation law for high-order finite difference method[J]. Acta Aerodynamica Sinica202139(1): 157-167 (in Chinese).
23 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报201536(9): 2923-2929.
  WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica201536(9): 2923-2929 (in Chinese).
24 王运涛, 孙岩, 孟德虹, 等. CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报201637(12): 3692-3697.
  WANG Y T, SUN Y, MENG D H, et al. High-order precision numerical simulation of CRM wing/body/horizontal tail model[J]. Acta Aeronautica et Astronautica Sinica201637(12): 3692-3697 (in Chinese).
25 FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics2016305: 333-359.
26 HAIMOVICH O, FRANKEL S H. Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method[J]. Computers & Fluids2017146: 105-116.
27 YE C C, ZHANG P J Y, WAN Z H, et al. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids2022238: 105368.
28 TAKAGI S, FU L, WAKIMURA H, et al. A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws[J]. Journal of Computational Physics2022452: 110899.
29 FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics2018374: 724-751.
30 FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal201957(3): 1143-1158.
31 PENG J, LIU S P, LI S Y, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics2021425: 109902.
32 HAMZEHLOO A, LUSHER D J, LAIZET S, et al. On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows[J]. International Journal for Numerical Methods in Fluids202193(1): 176-196.
33 DE VANNA F, BALDAN G, PICANO F, et al. Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence[J]. Computers & Fluids2023250: 105710.
34 HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids2022232: 105199.
35 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学学报201230(6): 709-712.
  TU G H, DENG X G, MAO M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamica Sinica201230(6): 709-712 (in Chinese).
36 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学202042(2): 210-219.
  ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science202042(2): 210-219 (in Chinese).
37 CHOUDHARI M M, LOCKARD D P. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]∥ Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2015.
38 HAN X S, KRAJNOVI? S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids201371(11): 1341-1360.
39 HAN X S, KRAJNOVI? S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal201553(4): 1103-1108.
40 HAN X S, KRAJNOVI? S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids201373(5): 436-461.
41 MIN Y B, WU W C, ZHANG H D, et al. Self-adaptive turbulence eddy simulation of flow control for drag reduction around a square cylinder with an upstream rod[J]. European Journal of Mechanics-B/Fluids2023100: 185-201.
42 PASCIONI K, CATTAFESTA L N, CHOUDHARI M M. An experimental investigation of the 30P30N multi-element high-lift airfoil[C]∥ Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014.
Outlines

/