ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review and prospect of model-based fault diagnosis technology for liquid rocket engines
Received date: 2023-05-18
Revised date: 2023-06-04
Accepted date: 2023-07-03
Online published: 2023-07-14
Supported by
National Science and Technology Major Project
The reusable liquid rocket engine is a key development direction of the future aerospace industry, and fault diagnosis capability is an important guarantee for its safe operation. Due to complex structure and harsh working conditions of the liquid rocket engine, its characteristics of multiple start-ups and wide-range thrust regulation in the reusable scenario, as well as diversity of failure modes, difficulty in fault mechanism analysis and lack of failure data, fault diagnosis research is facing many challenges. The model-based fault diagnosis method can cover failure modes comprehensively, operate with a clear process, and does not rely on fault data and expert knowledge support, exhibiting high engineering application value under current conditions. Therefore, this paper reviews the development and research of this domain in three aspects: model-based fault simulation, analytical model-based and empirical model-based fault diagnosis of liquid rocket engines on the system level. After a summary of its weaknesses and challenges, this paper makes prospect on the development trends of this technology.
Zehao CHEN , Hui CHEN , Yushan GAO , Hang ZHANG . Review and prospect of model-based fault diagnosis technology for liquid rocket engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 629016 -629016 . DOI: 10.7527/S1000-6893.2023.29016
1 | 包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5. |
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5 (in Chinese). | |
2 | 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15. |
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15 (in Chinese). | |
3 | RYAZANOV M. SSME schematic[EB/OL]. Washington, D.C.: NASA, 2015. (2016-05-23)[2023-05-17]. . |
4 | WILLIAMS W C, HIMMEL S C, MOBLEY T B, et al. Report of the SSME assessment team: NASA-TM-108217[R]. Washington, D.C.: NASA, 1993. |
5 | DAVIDSON M, STEPHENS J. Advanced health management system for the space shuttle main engine: AIAA-2004-3912[R]. Reston: AIAA, 2004. |
6 | 张振臻, 陈晖, 高玉闪, 等. 液体火箭发动机故障诊断技术综述[J]. 推进技术, 2022, 43(6): 20-38. |
ZHANG Z Z, CHEN H, GAO Y S, et al. Review on fault diagnosis technology of liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(6): 20-38 (in Chinese). | |
7 | TULPULE S. Pattern classification approach to rocket engine diagnostics: AIAA-1989-2850[R]. Reston: AIAA, 1989. |
8 | ALI M, GUPTA U. An expert system for fault diagnosis in a Space Shuttle main engine: AIAA-1990-1890[R]. Reston: AIAA, 1990. |
9 | 张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 1-12. |
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 1-12 (in Chinese). | |
10 | 李斌, 陈晖, 蒲星星, 等. 大推力液体火箭发动机涡轮泵实时故障监控方法: CN112377333B[P]. 2021-11-16. |
LI B, CHEN H, PU X X, et al. Real-time fault monitoring method for turbine pump of high-thrust liquid rocket engine: CN112377333B[P]. 2021-11-16 (in Chinese). | |
11 | LI B. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34. |
12 | 吴建军, 朱晓彬, 程玉强, 等. 液体火箭发动机智能健康监控技术研究进展[J]. 推进技术, 2022, 43(1): 7-19. |
WU J J, ZHU X B, CHENG Y Q, et al. Research progress of intelligent health monitoring technology for liquid-propellant rocket engines[J]. Journal of Propulsion Technology, 2022, 43(1): 7-19 (in Chinese). | |
13 | 王珺, 吕海鑫, 陈景龙, 等. 液体火箭发动机健康状态智能检测方法[J]. 火箭推进, 2021, 47(4): 52-58. |
WANG J, LYU H X, CHEN J L, et al. Intelligent detection method of liquid rocket engine health state[J]. Journal of Rocket Propulsion, 2021, 47(4): 52-58 (in Chinese). | |
14 | 张惠军. 液体火箭发动机故障检测与诊断技术综述[J]. 火箭推进, 2004, 30(5): 40-45. |
ZHANG H J. Study on liquid rocket engine fault detection and diagnostic technology[J]. Journal of Rocket Propulsion, 2004, 30(5): 40-45 (in Chinese). | |
15 | 颜子初. 液体火箭发动机状态监控与故障诊断技术的发展[J]. 导弹与航天运载技术, 1994(2): 8-17. |
YAN Z C. The development of condition monitoring and failure diagnostic technique for liquid propellant rocket engines[J]. Missiles and Space Vehicles, 1994(2): 8-17. (in Chinese) | |
16 | MACGREGOR C A. Reusable rocket engine maintenance study: NASA-CR-165569[R]. Washington, D.C.: NASA, 1982. |
17 | NORMAN A, NEMETH E. Development of a health monitoring algorithm: AIAA-1990-1991[R]. Reston: AIAA, 1990. |
18 | 杨尔辅, 张振鹏, 刘国球, 等. YF-75发动机状态监控与故障诊断工程应用系统的研制[J]. 推进技术, 1997, 18(1): 65-72. |
YANG E F, ZHANG Z P, LIU G Q, et al. Development of an engineering application system for condition moni-toring and fault diagnosis of YF-75 engine[J]. Journal of Propulsion Technology, 1997, 18(1): 65-72 (in Chinese). | |
19 | 谭松林, 陈祖奎. 液体火箭发动机典型故障类型及将来的传感器检测策略[J]. 火箭推进, 2003, 29(4): 30-34. |
TAN S L, CHEN Z K. Typical fault types of liquid rocket engine and sensor detection strategy in the future[J]. Journal of Rocket Propulsion, 2003, 29(4): 30-34 (in Chinese). | |
20 | 杨尔辅, 张振鹏, 崔定军. 液发推力室和涡轮泵故障监测与诊断技术研究[J]. 北京航空航天大学学报, 1999, 25(5): 619-622. |
YANG E F, ZHANG Z P, CUI D J. Study on fault monitoring and diagnosis techniques for thrust chamber and turbo pump systems of liquid rocket engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 619-622 (in Chinese). | |
21 | NEMETH E. Health management system for rocket engines: NASA-CR-185223[R]. Washington, D.C.: NASA, 1990. |
22 | 蔡益飞. 某液体火箭发动机故障仿真分析[J]. 上海航天, 2004, 21(5): 34-38. |
CAI Y F. The simulation analysis of some liquid rocket engine fault[J]. Aerospace Shanghai, 2004, 21(5): 34-38 (in Chinese). | |
23 | 张箭, 巩岩博, 刘忠恕, 等. 大推力氢氧发动机故障仿真与试验研究[J]. 深空探测学报(中英文), 2021, 8(4): 389-398. |
ZHANG J, GONG Y B, LIU Z S, et al. Fault simulation and experimental study on high-thrust LOX/LH2 rocket engine[J]. Journal of Deep Space Exploration, 2021, 8(4): 389-398 (in Chinese). | |
24 | 吴建军, 张育林, 陈启智. 大型泵压式液体火箭发动机故障综合分析[J]. 导弹与航天运载技术, 1996(1): 10-15. |
WU J J, ZHANG Y L, CHEN Q Z. Fault analysis for large liquid rocket engine with turbopump system[J]. Missiles and Space Vehicles, 1996(1): 10-15 (in Chinese). | |
25 | KOLCIO K, HELMICKI A, JAWEED S. Propulsion system modeling for condition monitoring and control: Part I, theoretical foundations: AIAA-1994-3227[R]. Reston: AIAA, 1994. |
26 | KOLCIO K, HELMICKI A J. Propulsion system modeling for condition monitoring and control: Part II, application to the SSME: AIAA-1994-3228[R]. AIAA, 1994. |
27 | 吴建军, 张育林, 陈启智. 液体火箭发动机稳态故障仿真及分析[J]. 推进技术, 1994, 15(3): 6-13. |
WU J J, ZHANG Y L, CHEN Q Z. Steady fault simulation and analysis of liquid rocket engine[J]. Journal of Propulsion Technology, 1994, 15(3): 6-13 (in Chinese). | |
28 | 吴建军, 张育林, 陈启智. 液体火箭发动机故障特性动态模拟[J]. 航空动力学报, 1994, 9(4): 361-365. |
WU J J, ZHANG Y L, CHEN Q Z. Transient performance simulation of a large liquid rocket engine under fault conditions[J]. Journal of Aerospace Power, 1994, 9(4): 361-365 (in Chinese). | |
29 | WU J J, ZHANG Y L, CHEN Q Z. A real-time verification system on fault diagnosis methods for liquid propellant rocket engine: AIAA-1996-2831[R]. Reston: AIAA, 1996. |
30 | 陆曙军, 张育林. 液体火箭发动机故障实时仿真模型[J]. 推进技术, 1996, 17(5): 14-17. |
LU S J, ZHANG Y L. Real-time fault simulation model of liquid rocket engine[J]. Journal of Propulsion Technology, 1996, 17(5): 14-17 (in Chinese). | |
31 | 吴建军, 张育林, 陈启智. 液体火箭发动机实时故障仿真系统实现[J]. 推进技术, 1997, 18(1): 26-30. |
WU J J, ZHANG Y L, CHEN Q Z. The real-time fault simulation system for liquid propellant rocket engines[J]. Journal of Propulsion Technology, 1997, 18(1): 26-30 (in Chinese). | |
32 | 杨尔辅, 徐用懋, 张振鹏, 等. 液体火箭推进系统故障过程建模与仿真研究[J]. 清华大学学报(自然科学版), 2001, 41(3): 104-108. |
YANG E F, XU Y M, ZHANG Z P, et al. Modeling and simulations of the failure process for liquid propellant rocket propulsion systems[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(3): 104-108 (in Chinese). | |
33 | CHA J, HA C, KOO J, et al. Dynamic simulation and analysis of the space shuttle main engine with artificially injected faults[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(4): 535-550. |
34 | 邓晨, 薛薇, 郑孟伟, 等. 大推力氢氧补燃循环发动机故障仿真[J]. 计算机测量与控制, 2019, 27(11): 48-53, 57. |
DENG C, XUE W, ZHENG M W, et al. Fault simulation for heavy-lift LH2/LOX staged combustion cycle engine[J]. Computer Measurement & Control, 2019, 27(11): 48-53, 57 (in Chinese). | |
35 | 刘登丰. 氢氧膨胀循环发动机系统动态特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LIU D F. Simulation on system dynamic characterisitcs of LOX/LH2 expander cycle engine[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). | |
36 | PARK S Y, AHN J. Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine[J]. Acta Astronautica, 2020, 177: 714-730. |
37 | 朱明清. 基于Modelica的液体火箭推进系统故障仿真及系统实现[D]. 武汉: 华中科技大学, 2016. |
ZHU M Q. Fault simulation and software development of liquid rocket propulsion system based on modelica[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). | |
38 | KAWATSU K. PHM by using multi-physics system-level modeling and simulation for EMAs of liquid rocket engine[C]∥ 2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019. |
39 | NGUYEN D G. Engine balance and dynamic model: RL-00001[R]. Canoga Park: Rockwell International, 1981. |
40 | 吴建军, 黄强, 程玉强, 等. 液体火箭发动机故障检测诊断理论与方法[M]. 北京: 国防工业出版社, 2013. |
WU J J, HUANG Q, CHENG Y Q, et al. Theory and method of fault detection and diagnosis for liquid-propellant rocket engines[M]. Beijing: National Defense Industry Press, 2013 (in Chinese). | |
41 | DING S X. Model-based fault diagnosis techniques: Design schemes, algorithms and tools[M]. London: Springer, 2013. |
42 | 杨尔辅, 张振鹏, 刘国球. 一种推进系统故障诊断反问题模型与算法[J]. 北京航空航天大学学报, 1999, 25(6): 684-687. |
YANG E F, ZHANG Z P, LIU G Q. Model and algorithm of inverse problems on fault diagnosis for propulsion systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6): 684-687 (in Chinese). | |
43 | TANIGUCHI M H. Failure control techniques for the SSME: NASA-CR-179224[R]. Washington, D.C.: NASA, 1987. |
44 | WALKER B, BAUMGARTNER E. Comparison of nonlinear smoothers and nonlinear estimators for rocket engine health monitoring: AIAA-1990-1891[R]: Reston: AIAA, 1990. |
45 | DUYAR A, ELDEM V, MERRILL W C, et al. State space representation of the open-loop dynamics of the space shuttle main engine[J]. Journal of Dynamic Systems, Measurement, and Control, 1991, 113(4): 684-690. |
46 | DUYAR A, ELDEM Y, MERRILL W, et al. A simplified dynamic model of space shuttle main engine[C]∥ 1991 American Control Conference. Piscataway: IEEE Press, 1991. |
47 | DUYAR A, MERRILL W. Fault diagnosis for the Space Shuttle main engine[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2): 384-389. |
48 | GUO T H, MERRILL W, DUYAR A. A distributed fault-detection and diagnosis system using on-line parameter estimation[J]. IFAC Proceedings Volumes, 1991, 24(5): 221-226. |
49 | DUYAR A, GUO T, MERRILL W, et al. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine: NASA-TM-105781[R]. Washington, D.C.: NASA, 1992. |
50 | DUYAR A, ELDEM V, MERRILL W, et al. Fault detection and diagnosis in propulsion systems: A fault parameter estimation approach[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 104-108. |
51 | LOZANO-TOVAR P C. Dynamic models for liquid rocket engines with health monitoring application[D]. Cambridge: Massachusetts Institute of Technology, 1998: 17-122. |
52 | HO N T. Failure detection and isolation for the space shuttle main engine[D]. Cambridge: Massachusetts Institute of Technology, 1998: 38-97. |
53 | CHA J, KO S, PARK S Y, et al. Fault detection and diagnosis algorithms for transient state of an open-cycle liquid rocket engine using nonlinear Kalman filter methods[J]. Acta Astronautica, 2019, 163: 147-156. |
54 | RICHARDSON N O, MELCHER K. Analytical redundancy using Kalman filters for rocket engine sensor validation: E-19820[R]. Cleveland: Glenn Research Center, 2020. |
55 | 张育林, 吴建军, 陈启智. 基于模型的推进系统故障检测与诊断[J]. 推进技术, 1994, 15(5): 1-8. |
ZHANG Y L, WU J J, CHEN Q Z. Model-based fault detection and diagnosis for liquid rocket propulsion system[J]. Journal of Propulsion Technology, 1994, 15(5): 1-8 (in Chinese). | |
56 | WU J J, ZHANG Y L, CHEN Q Z, et al. Fault detection and diagnosis based on neural networks for liquid rocket propulsion system: AIAA-1995-2350[R]. Reston: AIAA, 1995. |
57 | WU J J, ZHANG Y L, CHEN Q Z. The joint estimation approach of states and parameters for liquid rocket engine health monitoring[J]. Journal of National University of Defense Technology, 1997, 19(4): 14-20. |
58 | YU D R, WANG J B. Leak fault detection of liquid rocket engine based on strong tracking filter[J]. Journal of Propulsion and Power, 2002, 18(2): 280-283. |
59 | 胡庆雷, 曾杨智, 徐亦奇, 等. 一种基于改进粒子滤波的火箭发动机故障诊断方法: CN202011243993.7 [P]. 2021-10-15. |
HU Q L, ZENG Y Z, XU Y Q, et al. A fault diagnosis method for rocket engine based on improved particle fil-ter: CN202011243993.7[P]. 2021-10-15 (in Chinese). | |
60 | 胡庆雷, 曾杨智, 郑建英, 等. 基于增广粒子滤波的液体火箭发动机推力室故障诊断方法: CN113128570A[P]. 2022-12-20. |
HU Q L, ZENG Y Z, ZHENG J Y, et al. Liquid rocket engine thrust chamber fault diagnosis method based on augmented particle filtering: CN113128570A[P]. 2022-12-20 (in Chinese). | |
61 | NORMAN A M, MARAM J, COLEMAN P, et al. Development of a real-time model based safety monitoring algorithm for the SSME: AIAA-1992-3165[R]. Reston: AIAA, 1992. |
62 | NORMAN A M. Rocketdyne safety algorithm: Space shuttle main engine fault detection: NASA-CR-195356 [R]. Washington, D.C.: NASA, 1994. |
63 | 朱恒伟, 黄卫东, 王克昌, 等. 液体火箭发动机故障诊断的最优回归方法[J]. 国防科技大学学报, 1998, 20(1): 14-17. |
ZHU H W, HUANG W D, WANG K C, et al. An optimal regression approach to fault diagnosis of liquid rocket engin[J]. Journal of National University of Defense Technology, 1998, 20(1): 14-17 (in Chinese). | |
64 | SANTI L, BUTAS J. Generalized data reduction strategy for rocket engine applications: AIAA-2000-3306[R]. Reston: AIAA, 2000. |
65 | BUTAS J, MEYER C, SANTI L, et al. Rocket engine health monitoring using a model-based approach: AIAA-2001-3764[R]. Reston: AIAA, 2001. |
66 | CHA J, HA C, KO S, et al. Application of fault factor method to fault detection and diagnosis for space shuttle main engine[J]. Acta Astronautica, 2016, 126: 517-527. |
67 | LEE K, CHA J, KO S, et al. Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J]. Acta Astronautica, 2018, 150: 15-27. |
68 | 刘冰, 张育林. 奇偶空间法用于液体火箭发动机故障诊断[J]. 推进技术, 1999, 20(6): 6-9. |
LIU B, ZHANG Y L. Parity space method for fault diagnosis of liquid rocket engine[J]. Journal of Propulsion Technology, 1999, 20(6): 6-9 (in Chinese). | |
69 | HAWMAN M W, GALINAITIS W S, TULPULE S, et al. Framework for a space shuttle main engine health monitoring system: NASA-CR-185224[R]. Washington, D.C.: NASA, 1990. |
70 | HAWMAN M. Health monitoring system for the SSME-Program overview: AIAA-1990-1987[R]. Reston: AIAA, 1990. |
71 | 吴建军, 张育林, 陈启智, 等. 液体火箭发动机基于时序分析的实时在线故障检测算法[J]. 航空动力学报, 1996, 11(3): 289-293. |
WU J J, ZHANG Y L, CHEN Q Z, et al. A real time on-line fault detection algorithm based on time series analysis for liquid rocket engine[J]. Journal of Aerospace Power, 1996, 11(3): 289-293 (in Chinese). | |
72 | 王建波, 于达仁, 王广雄. 基于K-L信息测度的液体火箭发动机的泄漏故障检测[J]. 航空动力学报, 1999, 14(4): 429-432, 456. |
WANG J B, YU D R, WANG G X. Leak fault detection of liquid rocket engine based on k-l information distance[J]. Journal of Aerospace Power, 1999, 14(4): 429-432, 456 (in Chinese). | |
73 | 曹峰, 崔定军, 张振鹏. 基于时序分析的液体火箭发动机实时故障监测算法[J]. 推进技术, 1996, 17(1): 33-36. |
CAO F, CUI D J, ZHANG Z P. A real-time fault detection algorithimbased on tine series analysis for lre[J]. Journal of Propulsion Technology, 1996, 17(1): 33-36 (in Chinese). | |
74 | 张振鹏. 液体发动机故障检测与诊断中的基础研究问题[J]. 推进技术, 2002, 23(5): 353-359. |
ZHANG Z P. Fundamental study of fault monitoring and diagnostic technology of liquid rocket engine[J]. Journal of Propulsion Technology, 2002, 23(5): 353-359 (in Chinese). | |
75 | 薛薇, 张强, 武小平. 基于ARMA模型的液体火箭发动机实时故障诊断方法研究[J]. 计算机测量与控制, 2019, 27(9): 4-7, 22. |
XUE W, ZHANG Q, WU X P. Based on the ARMA model for the liquid rocket propulsion fault detection[J]. Computer Measurement & Control, 2019, 27(9): 4-7, 22 (in Chinese). | |
76 | ZHAO W L, GUO Y Q, YANG J, et al. Hardware-in-the-loop simulation platform for fault diagnosis of rocket engines[C]∥ 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2019. |
77 | 邓晨, 薛薇, 郑孟伟, 等. 基于改进ARMA模型的火箭发动机稳态工况过程实时故障诊断方法研究[J]. 计算机测量与控制, 2020, 28(2): 33-38. |
DENG C, XUE W, ZHENG M W, et al. Study on real-time diagnosis method of the main stage working condition of rocket engine based on improved ARMA model[J]. Computer Measurement & Control, 2020, 28(2): 33-38 (in Chinese). | |
78 | 张万旋, 张箭, 薛薇, 等. 基于AR/CGARCH模型的液体火箭发动机自适应阈值故障检测算法[J]. 推进技术, 2023, 44(3): 223-228. |
ZHANG W X, ZHANG J, XUE W, et al. Liquid rocket engine adaptive threshold fault detection algorithm based on AR/compact GARCH models[J]. Journal of Propulsion Technology, 2023, 44(3): 223-228 (in Chinese). | |
79 | 崔定军, 刘国球, 张振鹏. 液体火箭发动机系统故障实时监测算法研究[J]. 推进技术, 1993, 14(6): 1-6. |
CUI D J, LIU G Q, ZHANG Z P. Rela-time system fault detection algorithm for liquid rocket engine[J]. Journal of Propulsion Technology, 1993, 14(6): 1-6 (in Chinese). | |
80 | 高正明, 何彬, 赵娟. 液体火箭发动机点火初期推力参数预测[J]. 导弹与航天运载技术, 2008(1): 46-48. |
GAO Z M, HE B, ZHAO J. Prediction of thrust parameters for a liquid rocket engine in the initial stage after ignition[J]. Missiles and Space Vehicles, 2008(1): 46-48 (in Chinese). | |
81 | TULPULE S, GALINAITIS W. Health monitoring system for the SSME-fault detection algorithms: AIAA-1990-1988[R]. Reston: AIAA, 1990. |
82 | 赵万里, 郭迎清, 杨菁, 等. 液体火箭发动机故障诊断器设计及其HIL验证[J]. 北京航空航天大学学报, 2019, 45(10): 1995-2002. |
ZHAO W L, GUO Y Q, YANG J, et al. Design of liquid rocket engine fault diagnosis device and its HIL verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1995-2002 (in Chinese). | |
83 | 薛薇, 武小平, 张箭, 等. 基于RESID方法的液体火箭发动机实时故障诊断算法设计及半实物仿真验证[J]. 计算机测量与控制, 2022, 30(9): 17-21. |
XUE W, WU X P, ZHANG J, et al. Design of real time fault diagnosis algorithm for liquid rocket propulsion based on the RESID method[J]. Computer Measurement & Control, 2022, 30(9): 17-21 (in Chinese). | |
84 | 张育林, 吴建军. 液体火箭发动机健康监控技术[M]. 长沙: 国防科技大学出版社, 1998. |
ZHANG Y L, WU J J. Health monitoring technology of liquid rocket engines[M]. Changsha: National University of Defense Technology Press, 1998 (in Chinese). | |
85 | 黄敏超, 张育林, 陈启智. 神经网络在液体火箭发动机故障检测中的应用(Ⅱ)模式识别技术[J]. 推进技术, 1999, 20(2): 1-4. |
HUANG M C, ZHANG Y L, CHEN Q Z. Neural network approach to fault detection of liquid rocket engine (Ⅱ) pattern recognition technology[J]. Journal of Propulsion Technology, 1999, 20(2): 1-4 (in Chinese). | |
86 | 黄敏超, 张育林, 陈启智. 神经网络在液体火箭发动机故障检测中的应用(Ⅰ)非线性辨识技术[J]. 推进技术, 1999, 20(1): 6-10. |
HUANG M C, ZHANG Y L, CHEN Q Z. Neural network approach to fault detection of liquid rocket engine (Ⅰ)nonlinear identification technology[J]. Journal of Propulsion Technology, 1999, 20(1): 6-10 (in Chinese). | |
87 | MEYER C M, MAUL W A. The application of neural networks to the SSME startup transient: AIAA-1991-2530[R]. Reston: AIAA, 1991. |
88 | SARAVANAN N, DUYAR A, GUO T H, et al. Modeling space shuttle main engine using feed-forward neural networks[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 641-648. |
89 | 崔定军, 杨尔辅, 张振鹏, 等. 基于神经网络的火箭发动机动态过程建模[J]. 航空动力学报, 1995, 10(3): 249-252. |
CUI D J, YANG E F, ZHANG Z P, et al. Dynamic process modelling in rocket engine with neural networks[J]. Journal of Aerospace Power, 1995, 10(3): 249-252 (in Chinese). | |
90 | 崔定军, 杨尔辅, 张振鹏, 等. 用相关参数实现参数多步预测的神经网络方法[J]. 航空学报, 1996, 17(3): 310-316. |
CUI D J, YANG E F, ZHANG Z P, et al. Neural networks approach to the multi-steps prediction of multi-parameters with correlative parameters[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(3): 310-316 (in Chinese). | |
91 | 王建波, 于达仁. 基于RBF网络的火箭发动机动态过程建模[J]. 推进技术, 1999, 20(4): 9-12. |
WANG J B, YU D R. Rocket engine dynamic process modeling based on RBFN[J]. Journal of Propulsion Technology, 1999, 20(4): 9-12 (in Chinese). | |
92 | 黄强. 高压补燃液氧煤油发动机故障检测与诊断技术研究[D]. 长沙: 国防科技大学, 2012. |
HUANG Q. Study on the techniques of fault detection and diagnosis for high pressure staged combustion LOX/kerosene rocket engine[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
93 | 李艳军. 新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D]. 长沙: 国防科技大学, 2014. |
LI Y J. Study on key techniques of fault detection and diagnosis for new generation large-scale liquid-propellant rocket engines[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
94 | ZHANG W. Fault prediction methods of liquid rocket engine (LRE)[M]∥Failure characteristics analysis and fault diagnosis for liquid rocket engines. Berlin: Springer, 2016. |
95 | 田路, 张炜, 杨正伟. Elman型神经网络在液体火箭发动机故障预测中的应用[J]. 弹箭与制导学报, 2009, 29(1): 191-194. |
TIAN L, ZHANG W, YANG Z W. Application of Elman neural network on liquid rocket engine fault prediction[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 191-194 (in Chinese). | |
96 | 聂侥. 基于过程神经网络的液体火箭发动机故障预测方法研究[D]. 长沙: 国防科技大学, 2017. |
NIE Y. Investigation on fault prediction methods based on process neural network for liquid-propellant rocket engines[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
97 | 熊靖宇. 液氧甲烷发动机故障特征分析与故障预测方法研究[D]. 长沙: 国防科技大学, 2018. |
XIONG J Y. Investigation on fault feature analysis and fault prediction methods for LOX/methane rocket engines[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
98 | 吴玉洋, 李宁宁, 薛薇, 等. 改进PSO优化LSSVM的液体火箭发动机故障检测[J]. 计算机仿真, 2020, 37(5): 49-54. |
WU Y Y, LI N N, XUE W, et al. Fault diagnosis of liquid-propellant rocket engines base on improved PSO to optimize LSSVM[J]. Computer Simulation, 2020, 37(5): 49-54 (in Chinese). | |
99 | MARU Y, MORI H, OGAI T, et al. Anomaly detection configured as a combination of state observer and mahalanobis-taguchi method for a rocket engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16(2): 195-201. |
100 | WILLIAMS R B, PARLOS A G. Adaptive state filtering for space shuttle main engine turbine health monitoring[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 101-109. |
/
〈 |
|
〉 |