ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of CVD-SiC array structure on ablation resistance of ZrB2/SiC coatings
Received date: 2023-04-10
Revised date: 2023-05-16
Accepted date: 2023-06-26
Online published: 2023-07-11
Supported by
National Key Research and Development Program(2022YFE0121200);National Natural Science Foundation of China(51772027)
Influence of array structure on the performance of ZrB2/SiC coatings was studied by using femtosecond laser to prepare arrays with different sizes on the surface of the Chemical Vapor Deposition (CVD)-SiC interlayer. Results showed that with the increase of laser etching frequency, the depth of the array structure increased from 30 μm to 150 μm. After 600 s of oxyacetylene combustion, the surface temperature of the ZrB2/SiC coating decreased gradually with the increase of CVD-SiC microstructure depth, and the lowest surface temperature reached 1 700 ℃, which decreased by nearly 200 ℃. The color of the combustion center area transitioned from white to light gray. For the samples with an etching frequency of 5 times, after a single cycle of 600 s, the mass combustion rate and linear combustion rate were -7.4 × 10-5 g/s and -13.3 μm/s respectively. The array structure increased the contact area between the ZrB2/SiC coating and the CVD-SiC interlayer, thereby increasing the thermal conductivity, reducing heat accumulation, and ultimately enhancing the anti-combustion performance of the ZrB2/SiC coating.
Key words: array structure; ablation; plasma spraying; C/C composite materials; CVD-SiC; laser etching
Zhiting GAO , Zhuang MA , Yanbo LIU . Effect of CVD-SiC array structure on ablation resistance of ZrB2/SiC coatings[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(3) : 428842 -428842 . DOI: 10.7527/S1000-6893.2023.28842
1 | SEONG Y H, BAEK C, KIM J H, et al. Evaluation of oxidation behaviors of HfC-SiC ultra-high temperature ceramics at above 2500℃ via oxyacetylene torch[J]. Ceramics International, 2018, 44(7): 8505-8513. |
2 | 杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略[J]. 航空学报, 2022, 43(10): 527613. |
YANG S J, YAN X D, GUO H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527613 (in Chinese). | |
3 | 郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8):225659. |
ZHENG H, QIU L, YUAN S F, et al. Experimental method of guided wave monitoring for high temperature airflow damage of C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225659 (in Chinese). | |
4 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
5 | 李定骏, 杨镠育, 孙帆, 等. 预热温度对热障涂层表面裂纹形成的影响[J]. 航空学报, 2022, 43(6): 526184. |
LI D J, YANG L Y, SUN F, et al. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526184 (in Chinese). | |
6 | VAN WIE D M, DREWRY D G, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of Materials Science, 2004, 39(19): 5915-5924. |
7 | 杨震晓, 倪立勇, 杨杰, 等. Tb4O7掺杂Cr2O3-TiO2基高发射率涂层结构及辐射性能研究[J]. 表面技术, 2018, 47(5): 154-158. |
YANG Z X, NI L Y, YANG J, et al. Microstructure and radiation property of Tb4O7 doped Cr2O3-TiO2-based high emissivity coating[J]. Surface Technology, 2018, 47(5): 154-158 (in Chinese). | |
8 | 吴清仁, 吴建青, 文壁璇. SiC换热器材料热物理性质的研究[J]. 无机材料学报, 1996, 11(2): 333-337. |
WU Q R, WU J Q, WEN B X. Studies on the thermophysical properties of SiC heat exchanger materials[J]. Journal of Inorganic Materials, 1996, 11(2): 333-337 (in Chinese). | |
9 | AGOSTINI B, FABBRI M, PARK J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281. |
10 | JIANG D F, LONG J Y, CAI M Y, et al. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining[J]. Materials and Design, 2017, 114: 185-193. |
11 | 曹泷, 杨辉, 吴学红, 等. 微纳结构沸腾表面构建及传热性能的研究进展[J]. 微纳电子技术, 2020, 57(12): 982-991. |
CAO S, YANG H, WU X H, et al. Research progress of the construction and heat transfer characteristics of boiling surfaces with micro-nano structures[J]. Micronanoelectronic Technology, 2020, 57(12): 982-991 (in Chinese). | |
12 | XU B, OOTI K T, WONG N T, et al. Experimental investigation of flow friction for liquid flow in microchannels[J]. International Communications in Heat and Mass Transfer, 2000, 27(8): 1165-1176. |
13 | JUDY J, MAYNES D, WEBB B W. Characterization of frictional pressure drop for liquid flows through microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489. |
14 | HAO P F, HE F, ZHU K Q. Flow characteristics in a trapezoidal silicon microchannel[J]. Journal of Micromechanics and Microengineering, 2005, 15(6): 1362-1368. |
15 | MCHALE J P, GARIMELLA S V. Heat transfer in trapezoidal microchannels of various aspect ratios[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 365-375. |
16 | ERGU O B, SARA O N, YAP?C? S, et al. Pressure drop and point mass transfer in a rectangular microchannel[J]. International Communications in Heat and Mass Transfer, 2009, 36(6): 618-623. |
17 | CHIU H C, JANG J H, YEH H W, et al. The heat transfer characteristics of liquid cooling heatsink containing microchannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3): 34-42. |
18 | 张加波, 张开虎, 范洪涛, 等. 纤维复合材料激光加工进展及航天应用展望[J]. 航空学报, 2022, 43(4): 525735. |
ZHANG J B, ZHANG K H, FAN H T, et al. Progress in laser processing of fiber composite materials and prospects of its applications in aerospace[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525735 (in Chinese). | |
19 | JIANG D F, LONG J Y, HAN J P, et al. Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures[J]. Materials Science and Engineering: A, 2017, 696: 429-436. |
20 | WANG S L, LI K Z, LI H J, et al. Effects of microstructures on the ablation behaviors of ZrC deposited by CVD[J]. Surface and Coatings Technology, 2014, 240: 450-455. |
21 | GAO Z T, MA Z, LIU Q, et al. Anti-ablation performance of plasma sprayed ZrB2/SiC coatings on C/C substrates and the influence of a chemical vapor deposited SiC interlayer[J]. Materials Today Communications, 2023, 36: 106591. |
22 | ZHANG Y L, HU H, REN J C, et al. Effect of the surface microstructure of SiC inner coating on the bonding strength and ablation resistance of ZrB2-SiC coating for C/C composites[J]. Ceramics International, 2016, 42(16): 18657-18665. |
23 | AGARWAL S, KOYANAGI T, BHATTACHARYA A, et al. Neutron irradiation-induced microstructure damage in ultra-high temperature ceramic TiC[J]. Acta Materialia, 2020, 186: 1-10. |
24 | ZHANG Y H, LUNGHI A, SANVITO S. Pushing the limits of atomistic simulations towards ultra-high temperature: A machine-learning force field for ZrB2 [J]. Acta Materialia, 2020, 186: 467-474. |
25 | LI L, LI H J, SHEN Q L, et al. Oxidation behavior and microstructure evolution of SiC-ZrB2-ZrC coating for C/C composites at 1673K[J]. Ceramics International, 2016, 42(11): 13041-13046. |
26 | LI L, LI H J, LIN H J, et al. Comparison of the oxidation behaviors of SiC coatings on C/C composites prepared by pack cementation and chemical vapor deposition[J]. Surface and Coatings Technology, 2016, 302: 56-64. |
/
〈 |
|
〉 |