Fluid Mechanics and Vehicle Conceptual Design

Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer

  • Junyang LI ,
  • Pengxin LIU ,
  • Ming YU ,
  • Dong SUN ,
  • Siwei DONG ,
  • Xianxu YUAN
Expand
  • State Key Laboratory of Aerodynamics,Mianyang  621000,China

Received date: 2023-05-05

  Revised date: 2023-06-05

  Accepted date: 2023-07-03

  Online published: 2023-07-07

Supported by

National Key R&D Program of China(2019YFA0405200);National Natural Science Foundation of China(12272396);National Numerical Windtunnel Project

Abstract

During the high-speed flight of the aircraft, the head shock wave will strongly compress the incoming flow, which will lead to a sharp increase in gas temperature and stimulate the high-temperature non-equilibrium effect. The high-enthalpy turbulent boundary layer is formed by coupling high temperature non-equilibrium effects and turbulence, which makes the formation mechanism of wall heat flux on the aircraft surface more complex. In this paper, based on the internal energy conservation equation, the heat flux decomposition formula suitable for the high-enthalpy turbulent boundary layer is derived. The heat flux generation mechanism of the high enthalpy zero-pressure gradient plate turbulent boundary layer is analyzed, focusing on the effect of viscous dissipation on the generation of wall heat flux. The results show that viscous dissipation is the main source of heat flux generation, and the high temperature non-equilibrium effect increases the contribution of viscous dissipation near the wall. The viscous dissipation can be divided into two parts: average and fluctuating ones, which are mainly distributed in the near-wall region and logarithmic region, respectively. The two parts of viscous dissipation have a significant effect on the wall heat flux, and the contribution of the average viscous dissipation on the wall heat flux is about twice that of the fluctuating viscous dissipation.

Cite this article

Junyang LI , Pengxin LIU , Ming YU , Dong SUN , Siwei DONG , Xianxu YUAN . Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528963 -528963 . DOI: 10.7527/S1000-6893.2023.28963

References

1 姚卫, 张政, 赵伟, 等. 高超声速飞/发一体化进展与趋势[J]. 推进技术202344(8): 6-21.
  YAO W, ZHANG Z, ZHAO W, et al. Progress and trend of hypersonic aircraft/engine integration [J]. Journal of Propulsion Technology202344(8): 6-21 (in Chinese).
2 齐伟呈, 程思野, 李堃. 高超声速飞行器及推进系统研究进展[J]. 科技创新与应用202212(31): 18-21.
  QI W C, CHENG S Y, LI K. Research progress of hypersonic vehicle and propulsion system[J]. Technology Innovation and Application202212(31): 18-21 (in Chinese).
3 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences201684: 1-28.
4 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学202151(11): 1326-1347.
  CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica)202151(11): 1326-1347 (in Chinese).
5 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报202142(9): 625733.
  YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625733 (in Chinese).
6 ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, 2006.
7 SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics20202(1): 1-39.
8 DUAN L, MARTíN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics2011684: 25-59.
9 DUAN L, MARTíN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal201149(1): 172-184.
10 DUAN L, MARTIN M P. Effective approach for estimating turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal201149(10): 2239-2247.
11 DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics2021912: A29.
12 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报202243(1): 124877.
  LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica202243(1): 124877 (in Chinese).
13 刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报202142(): 4-15.
  LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica202142(Sup 1): 4-15 (in Chinese).
14 刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报202254(1): 39-47.
  LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics202254(1): 39-47 (in Chinese).
15 PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Finite-rate chemistry effects in turbulent hypersonic boundary layers: A direct numerical simulation study[J]. Physical Review Fluids20216(5): 054604.
16 PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics2022941: A21.
17 ZHANG P, XIA Z H. Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows[J]. Physical Review E2020102(4): 043107.
18 WENZEL C, GIBIS T, KLOKER M. About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers[J]. Journal of Fluid Mechanics2022930: A1.
19 RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics2016790: 339-367.
20 SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics20213(1): 1-13.
21 LI J Y, YU M, SUN D, et al. Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers[J]. Physics of Fluids202234(8): 085102.
22 LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids2018170: 261-272.
23 CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics2011230(5): 1766-1792.
24 GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington D.C.: NASA, 1989.
25 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
26 ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids2018165: 127-143.
27 ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal201856(11): 4297-4311.
28 JIMENEZ J. Near-wall turbulence[J]. Physical of Fluids201325(10): 110814.
Outlines

/