ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer
Received date: 2023-05-05
Revised date: 2023-06-05
Accepted date: 2023-07-03
Online published: 2023-07-07
Supported by
National Key R&D Program of China(2019YFA0405200);National Natural Science Foundation of China(12272396);National Numerical Windtunnel Project
During the high-speed flight of the aircraft, the head shock wave will strongly compress the incoming flow, which will lead to a sharp increase in gas temperature and stimulate the high-temperature non-equilibrium effect. The high-enthalpy turbulent boundary layer is formed by coupling high temperature non-equilibrium effects and turbulence, which makes the formation mechanism of wall heat flux on the aircraft surface more complex. In this paper, based on the internal energy conservation equation, the heat flux decomposition formula suitable for the high-enthalpy turbulent boundary layer is derived. The heat flux generation mechanism of the high enthalpy zero-pressure gradient plate turbulent boundary layer is analyzed, focusing on the effect of viscous dissipation on the generation of wall heat flux. The results show that viscous dissipation is the main source of heat flux generation, and the high temperature non-equilibrium effect increases the contribution of viscous dissipation near the wall. The viscous dissipation can be divided into two parts: average and fluctuating ones, which are mainly distributed in the near-wall region and logarithmic region, respectively. The two parts of viscous dissipation have a significant effect on the wall heat flux, and the contribution of the average viscous dissipation on the wall heat flux is about twice that of the fluctuating viscous dissipation.
Junyang LI , Pengxin LIU , Ming YU , Dong SUN , Siwei DONG , Xianxu YUAN . Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528963 -528963 . DOI: 10.7527/S1000-6893.2023.28963
1 | 姚卫, 张政, 赵伟, 等. 高超声速飞/发一体化进展与趋势[J]. 推进技术, 2023, 44(8): 6-21. |
YAO W, ZHANG Z, ZHAO W, et al. Progress and trend of hypersonic aircraft/engine integration [J]. Journal of Propulsion Technology, 2023, 44(8): 6-21 (in Chinese). | |
2 | 齐伟呈, 程思野, 李堃. 高超声速飞行器及推进系统研究进展[J]. 科技创新与应用, 2022, 12(31): 18-21. |
QI W C, CHENG S Y, LI K. Research progress of hypersonic vehicle and propulsion system[J]. Technology Innovation and Application, 2022, 12(31): 18-21 (in Chinese). | |
3 | SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
4 | 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347. |
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese). | |
5 | 袁先旭, 陈坚强, 杜雁霞, 等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展[J]. 航空学报, 2021, 42(9): 625733. |
YUAN X X, CHEN J Q, DU Y X, et al. Research progress on fundamental CFD issues in National Numerical Windtunnel Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625733 (in Chinese). | |
6 | ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, 2006. |
7 | SHANG J J S, YAN H. High-enthalpy hypersonic flows[J]. Advances in Aerodynamics, 2020, 2(1): 1-39. |
8 | DUAN L, MARTíN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59. |
9 | DUAN L, MARTíN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1): 172-184. |
10 | DUAN L, MARTIN M P. Effective approach for estimating turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(10): 2239-2247. |
11 | DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29. |
12 | 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877. |
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese). | |
13 | 刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(): 4-15. |
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Sup 1): 4-15 (in Chinese). | |
14 | 刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报, 2022, 54(1): 39-47. |
LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47 (in Chinese). | |
15 | PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Finite-rate chemistry effects in turbulent hypersonic boundary layers: A direct numerical simulation study[J]. Physical Review Fluids, 2021, 6(5): 054604. |
16 | PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2022, 941: A21. |
17 | ZHANG P, XIA Z H. Contribution of viscous stress work to wall heat flux in compressible turbulent channel flows[J]. Physical Review E, 2020, 102(4): 043107. |
18 | WENZEL C, GIBIS T, KLOKER M. About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers[J]. Journal of Fluid Mechanics, 2022, 930: A1. |
19 | RENARD N, DECK S. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer[J]. Journal of Fluid Mechanics, 2016, 790: 339-367. |
20 | SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 1-13. |
21 | LI J Y, YU M, SUN D, et al. Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers[J]. Physics of Fluids, 2022, 34(8): 085102. |
22 | LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272. |
23 | CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. |
24 | GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-RP-1232[R]. Washington D.C.: NASA, 1989. |
25 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
26 | ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143. |
27 | ZHANG C, DUAN L A, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. |
28 | JIMENEZ J. Near-wall turbulence[J]. Physical of Fluids, 2013, 25(10): 110814. |
/
〈 |
|
〉 |