Material Engineering and Mechanical Manufacturing

Prediction of thermo⁃physical properties of inorganic⁃organic hybrid phenolic aerogel composites

  • Chunyun ZHANG ,
  • Xiongbin CHEN ,
  • Jian LIU ,
  • Miao CUI
Expand
  • 1.State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology,Dalian 116024,China
    2.Key Laboratory of Advanced Technology for Aerospace Vehicles of Liaoning Province,Dalian University of Technology,Dalian 116024,China
    3.Beijing Aerospace Technology Institute,Beijing 100074,China

Received date: 2023-04-10

  Revised date: 2023-06-12

  Accepted date: 2023-06-28

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(12172078);Fundamental Research Funds for the Central Universities(DUT21LK04)

Abstract

The thermo-physical properties of Inorganic-organic Hybrid Phenolic Aerogel Composites (IPC) are difficult to be accurately measured, due to the dynamic changes during carbonization. A new method to predict the thermo- physical properties of IPC during carbonization is proposed based on the measured information, by solving transient nonlinear inverse heat conduction problems. The modified gradient-based algorithm is applied to solving the transient nonlinear inverse heat conduction problem, to predict the temperature-dependent thermo-physical properties. To improve the accuracy, the complex variable-differentiation method is introduced to calculate the sensitivity coefficient matrix. The results show that the proposed algorithm has better stability, accuracy and efficiency than the conventional gradient algorithm in solving transient nonlinear inverse heat conduction problems, and the calculation time is reduced from 75 s to 35 s. The relative error between the calculated temperatures and measurements is 3.279%, and the present algorithm has high accuracy in predicting the effective thermal conductivity of IPC during carbonization. This work provides an effective method for the determination of the high temperature thermo-physical properties of thermal protection materials, and provides the key parameters for the engineering design of charring thermal protection materials.

Cite this article

Chunyun ZHANG , Xiongbin CHEN , Jian LIU , Miao CUI . Prediction of thermo⁃physical properties of inorganic⁃organic hybrid phenolic aerogel composites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 428848 -428848 . DOI: 10.7527/S1000-6893.2023.28848

References

1 GHOSH P, NASKAR K, DAS N C. Influence of synthetic graphite powder on tribological and thermo-mechanical properties of organic-inorganic hybrid fiber reinforced elastomer-modified phenolic resin friction composites[J]. Composites Part C: Open Access20202: 100018.
2 刘圆圆, 郭慧, 刘韬, 等. 酚醛树脂基纳米多孔材料的制备及结构调控[J]. 航空学报201940(5): 422654.
  LIU Y Y, GUO H, LIU T, et al. Preparation and structure control of phenolic resin-based nanoporous materials[J]. Acta Aeronautica et Astronautica Sinica201940(5): 422654 (in Chinese).
3 NIU Z Q, CHEN B X, SHEN S, et al. Zirconium chelated hybrid phenolic resin with enhanced thermal and ablation resistance properties for thermal insulation composites[J]. Composites Communications202235: 101284.
4 董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报201869(11): 4896-4901.
  DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal201869(11): 4896-4901 (in Chinese).
5 MERRITT B, SENECA M, LARSON S, et al. Measurements of the thermal conductivity of reference liquids using a modified transient hot-wire needle probe[J]. International Journal of Heat and Mass Transfer2022189: 122674.
6 KHALIFA D, JANNOT Y, DEGIOVANNI A, et al. Thermophysical characterization of mould materials using parallel hot wire and needle probe methods at high temperatures[J]. International Journal of Thermal Sciences2022179: 107630.
7 王泽林, 籍日添, 惠心雨, 等. 基于深度学习驱动的L型定向热疏导机理[J]. 航空学报202142(6): 124242.
  WANG Z L, JI R T, HUI X Y, et al. L-shaped directional heat transfer based on deep learning[J]. Acta Aeronautica et Astronautica Sinica202142(6): 124242 (in Chinese).
8 TOURN B A, áLVAREZ HOSTOS J C, FACHINOT TI V D. A modified sequential gradient-based method for the inverse estimation of transient heat transfer coefficients in non-linear one-dimensional heat conduction problems[J]. International Communications in Heat and Mass Transfer2021127: 105488.
9 SANCHEZ-CAMARGO C M, HOR A, MABRU C. A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter[J]. International Journal of Mechanical Sciences2020171: 105370.
10 兑红娜, 刘栋梁, 张志贤, 等. 基于应变测量的结构载荷分布反演方法[J]. 航空学报202142(5): 524337.
  DUI H N, LIU D L, ZHANG Z X, et al. Distributed load recovery approach based on strain measurements[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524337 (in Chinese).
11 周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学201435(12): 1341-1351.
  ZHOU H L, XU X S, LI X L, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics201435(12): 1341-1351 (in Chinese).
12 TAHMASBI V, NOORI S. Inverse identification of temperature-dependent thermal conductivity coefficients in an orthotropic charring composite[J]. Applied Thermal Engineering2021183: 116219.
13 LIU H, XIA X L, AI Q, et al. Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite[J]. Experimental Thermal and Fluid Science201784: 67-77.
14 姜贵庆, 马志强, 俞继军, 等. 新型防热涂层热导率的参数辩识[J]. 宇航材料工艺200838(4): 11-13.
  JIANG G Q, MA Z Q, YU J J, et al. Parameter identification of thermal conductivity coefficient for new type coating materials[J]. Aerospace Materials & Technology200838(4): 11-13 (in Chinese).
15 XIE T, HE Y L, TONG Z X, et al. An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material[J]. Applied Thermal Engineering201587: 214-224.
16 张红军, 李海群, 康宏琳, 等. 纳米酚醛气凝胶材料高温热物性参数辨识方法[J]. 北京航空航天大学学报202349(1): 92-99.
  ZHANG H J, LI H Q, KANG H L, et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics202349(1): 92-99 (in Chinese).
17 林旭文, 高博, 易法军, 等. 烧蚀炭化热防护材料热导率的贝叶斯辨识方法[J]. 空天技术2022(3): 18-30, 70.
  LIN X W, GAO B, YI F J, et al. Bayesian identification of thermal conductivity for charring ablative thermal protection materials[J]. Aerospace Technology2022(3): 18-30, 70 (in Chinese).
18 WANG X M, ZHANG L S, YANG C, et al. Estimation of temperature-dependent thermal conductivity and specific heat capacity for charring ablators[J]. International Journal of Heat and Mass Transfer2019129: 894-902.
19 POURGHOLI R, DANA H, TABASI S H. Solving an inverse heat conduction problem using genetic algorithm: Sequential and multi-core parallelization approach[J]. Applied Mathematical Modelling201438(7-8): 1948-1958.
20 SAJEDI R, FARAJI J, KOWSARY F. A new damping strategy of Levenberg-Marquardt algorithm with a fuzzy method for inverse heat transfer problem parameter estimation[J]. International Communications in Heat and Mass Transfer2021126: 105433.
21 HAN W W, CHEN H B, LU T. Estimation of the time-dependent convective boundary condition in a horizontal pipe with thermal stratification based on inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer2019132: 723-730.
22 ZHANG C Y, MEI J, BAI Y S, et al. Simultaneous identification of multi-parameter for power hardening elastoplastic problems in three-dimensional geometries[J]. Engineering Computations202239(8): 2990-3011.
23 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
  YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese).
24 CUI M, ZHAO Y, XU B B, et al. A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer2017107: 747-754.
25 ZHANG B W, MEI J, ZHANG C Y, et al. A general method for predicting the bank thickness of a smelting furnace with phase change[J]. Applied Thermal Engineering2019162: 114219.
Outlines

/