Material Engineering and Mechanical Manufacturing

Intelligent clamping system for machining composite blades of aeroengines

  • Deli ZHANG ,
  • Zheng QIN ,
  • Zhe LIU ,
  • Ming LI ,
  • Kai HE
Expand
  • 1.College of Mechanical & Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.Engineering Technology Center,Shenyang Aircraft Company,Shenyang  110850,China
    3.Factory 21,Shenyang Aircraft Company,Shenyang  110850,China
    4.Aerospace Haiying(Zhenjiang)Special Materials Co. ,Ltd,Zhenjiang  212001,China
E-mail: nuaazdl@126.com

Received date: 2023-05-10

  Revised date: 2023-05-25

  Accepted date: 2023-06-07

  Online published: 2023-06-27

Supported by

National Natural Science Foundation of China(51975280)

Abstract

After hot pressing molding of aeroengine composite blades, the profile error is large and the rigidity is weak, and the clamping of the blade in the tenon root milling and blade edge trimming poses significant challenge. Therefore, it is often necessary to reconstruct the profile through scanning and regenerate CNC machining codes, which leads to complex processing processes and non-universal CNC processing files, and thus, seriously affects the batch production efficiency. In this paper, a multi-point adaptive clamping and attitude adjustment system for aircraft composite blade machining is proposed. This system employs flexible array tooling with separate positioning and clamping, using elastic suction cups for clamping, and rigid locators for positioning to ensure high accuracy of the molded surface after tightening and positioning. Results show that the system can automatically adjust the machining position and posture according to the error of blade profile and tenon root. Results also show that this system can ensure that the tenon root and edges meet the performance requirements without modifying the CNC machining code; therefore, greatly reduces the difficulty of blade cutting and improves the machining efficiency.

Cite this article

Deli ZHANG , Zheng QIN , Zhe LIU , Ming LI , Kai HE . Intelligent clamping system for machining composite blades of aeroengines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(20) : 428987 -428987 . DOI: 10.7527/S1000-6893.2023.28987

References

1 邵帅, 曹航, 王相平, 等. 航空发动机复合材料风扇叶片强度分析与铺层优化设计[J]. 燃气涡轮试验与研究202235(4): 20-25.
  SHAO S, CAO H, WANG X P, et al. Strength analysis and ply optimization design of composite fan blades for aero-engine[J]. Gas Turbine Test and Research202235(4): 20-25 (in Chinese).
2 周何, 李小兵, 张婷, 等. 航空发动机复合材料风扇叶片制造工艺应用进展[J]. 航空制造技术202265(13): 84-91.
  ZHOU H, LI X B, ZHANG T, et al. Progress in manufacturing technology and application of aeroengine composite fan blades[J]. Aviation Manufacturing Technology202265(13): 84-91 (in Chinese).
3 朱启晨. 复合材料风扇叶片的铺层设计及有限元分析技术研究[D]. 上海: 上海交通大学, 2018: 20-25.
  ZHU Q C. Research on lamination design and finite element analysis of composite fan blades[D]. Shanghai: Shanghai Jiaotong University, 2018: 20-25 (in Chinese).
4 黄云, 李少川, 肖贵坚, 等. 航空发动机叶片材料及抗疲劳磨削技术现状[J]. 航空材料学报202141(4): 17-35.
  HUANG Y, LI S C, XIAO G J, et al. Present situation of aero-engine blade material and anti-fatigue grinding technology[J]. Journal of Aeronautical Materials202141(4): 17-35 (in Chinese).
5 张婷. 航空薄壁件装夹布局优化研究[D]. 南昌: 南昌航空大学, 2017:36-42.
  ZHANG T. Research on the optimization of the clamping layout of aviation thin-walled parts[D]. Nanchang: Nanchang Hangkong University, 2017:36-42 (in Chinese).
6 ARSLANE M, SLAMANI M, CHATELAIN J F. Development and validation of a machining fixture for complex-shaped components based on Plückerian matrix approach and SDT concept[J]. The International Journal of Advanced Manufacturing Technology202125(5): 1-20.
7 王辉, 周明星, 余杰, 等. 航空发动机叶片保形加工中的定位误差数值建模与分析[J]. 计算机集成制造系统201622(9): 2118-2126.
  WANG H, ZHOU M X, YU J, et al. Numerical modeling and analysis of positioning error in conformal machining of aeroengine blades[J]. Computer Integrated Manufacturing System201622(9): 2118-2126 (in Chinese).
8 张凱尧. 航空发动机精锻叶片铣削工装结构分析与优化设计[D]. 烟台: 烟台大学, 2020:54-66.
  ZHANG K Y. Structural analysis and optimal design of milling tooling for aero-engine precision forged blades[D]. Yantai: Yantai University, 2020:54-66 (in Chinese).
9 任军学, 冯亚洲, 米翔畅, 等. 航空发动机精锻叶片自适应数控加工技术[J]. 航空制造技术201522 (4): 52-55.
  REN J X, FENG Y Z, MI X C, et al. Adaptive NC machining technology for aero-engine precision forged blades[J]. Aviation Manufacturing Technology201522(4): 52-55 (in Chinese).
10 陈文亮, 潘国威, 丁力平. 飞机数字化装配技术发展现状[J]. 航空制造技术201628(8): 26-30.
  CHEN W L, PAN G W, DING L P. Development status of aircraft digital assembly technology[J]. Aviation Manufacturing Technology201628(8): 26-30 (in Chinese).
11 吴志新, 昂给拉玛, 甘丽君. 航空发动机叶片数控加工新技术及应用[J]. 航空制造技术201861(15): 63-68.
  WU Z X, ANGGEI L M, GAN L J. New technology and application of aero-engine blade NC machining[J]. Aviation Manufacturing Technology201861(15): 63-68 (in Chinese).
12 MARSH G. Composites get in deep with new-generation engine[J]. Reinforced Plastics200650(11): 26-29.
13 房建国, 马艳玲, 李迪, 等. 发动机叶片椭圆进排气边智能磨削加工检测一体化技术[J]. 航空精密制造技术201652(6): 1-6.
  FANG J G, MA Y L, LI D, et al. Integrated technique for intelligent grinding, machining and detection of engine blade elliptic inlet and exhaust edges[J] Aviation Precision Manufacturing Technology201652(6): 1-6 (in Chinese).
14 宋超. 航空发动机复合材料叶片设计及成形技术研究[D]. 南京: 南京航空航天大学, 2014:34-39.
  SONG C. Research on composite blade design and forming technology of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 34-39 (in Chinese)
15 屈力刚, 陈国涛, 苏长青, 等. 飞机壁板真空吸盘式柔性装配工装系统设计[J]. 沈阳航空航天大学学报201431(6): 36-41.
  QU L G, CHEN G T, SU C Q, et al. Design of vacuum sucker flexible assembly tooling system for aircraft panel[J]. Journal of Shenyang University of Aeronautics and Astronautics201431(6): 36-41 (in Chinese).
16 吴锡. 机翼薄壁件自动刮胶设备的设计研究[D]. 天津: 河北工业大学, 2020: 28-32.
  WU X. Design and research of automatic glue scraping equipment for thin-walled wing parts[D]. Tianjin: Hebei University of Technology, 2020:28-32 (in Chinese).
17 王涛, 李战, 王盛, 等. 基于散斑视觉测量的叶片模型重构[J]. 激光与光电子学进展201956(1): 232-241.
  WANG T, LI Z, WANG S, et al. Blades model reconstruction based on speckle vision measurement[J]. Laser & Optoelectronics Progress201956(1): 232-241 (in Chinese).
18 冯亚洲. 航空发动机精锻叶片自适应加工工艺几何模型构建[D]. 西安: 西北工业大学, 2018: 34-39.
  FENG Y Z. Construction of adaptive machining process geometric model for aero-engine precision forged blades[D]. Xi’an: Northwest Polytechnic University,2018: 34-39 (in Chinese).
19 FENG Y, REN J, LIANG Y. Prediction and reconstruction of edge shape in adaptive machining of precision forged blade[J]. The International Journal of Advanced Manufacturing Technology201896(5-8): 2355-2366.
20 张伟锋. 斯皮尔曼简捷相关系数与基尼伽玛相关系数的统计特性分析[D]. 广州: 广东工业大学, 2020: 57-64.
  ZHANG W F. Analysis of statistical characteristics of Spearman simple correlation coefficient and Gini gamma correlation coefficient[D]. Guangzhou: Guangdong University of Technology, 2020: 57-64 (in Chinese).
Outlines

/