ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Application of GPU⁃accelerated high⁃order spectral difference method in fan noise
Received date: 2023-04-28
Revised date: 2023-05-17
Accepted date: 2023-06-16
Online published: 2023-06-27
Supported by
National Key Research and Development Project(2018YFA0703300);National Science and Technology Major Project(J2019-II-0006-0026);National Natural Science Foundation of China(NSFC-51876003)
The fan is one of the main noise sources of the large bypass turbofan engine, and accurate prediction of fan noise is of great significance for acoustic design and noise mechanism analysis. High-precision computational aeroacoustic methods are an important approach to fan noise calculation, where, however, their application is limited due to the enormous computational resource requirements. This paper applies GPU-accelerated computing methods to a high-order spectral difference computational aeroacoustic solver, tests and optimizes different GPU/CPU heterogeneous computing modes, and analyzes the bottlenecks affecting heterogeneous computing efficiency. Test results on a single A100 GPU card show that the GPU computational speed-up ratios are 20.4 and 14.0 for stationary and rotating grids, respectively, compared with a dual-CPU 28-core computing node. Finally, this paper applies the GPU-accelerated computational aeroacoustic solver to the numerical simulation of low-speed fan noise, accurately predicting the dominant modes of the first two orders of Blade Passage Frequency (BPF) in the duct. Compared with the experimental results, the error in the modal sound power level is within 5 dB.
Key words: GPU; heterogeneous computing; fan noise; spectral difference method; turbomachinery
Dongfei ZHANG , Junhui GAO . Application of GPU⁃accelerated high⁃order spectral difference method in fan noise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(8) : 128941 -128941 . DOI: 10.7527/S1000-6893.2023.28941
1 | ENVIA E. Fan noise reduction: an overview[J]. International Journal of Aeroacoustics, 2002, 1(1): 43-64. |
2 | ENVIA E, WILSON A G, HUFF D L. Fan noise: A challenge to CAA[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 471-480. |
3 | TAM C K W. Computational aeroacoustics: an overview of computational challenges and applications[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 547-567. |
4 | NVIDA CUDA c programming guide[EB/OL]. [2020-10-31]. . |
5 | NVIDIA A 100 tensor core GPU[EB/OL]. [2020-10-31]. . |
6 | Intel Xeon Platinum 8376HL Processor[EB/OL]. [2020-10-31]. . |
7 | NVIDIA H 100 tensor core GPU[EB/OL]. [2022-10-31]. . |
8 | 鞠鹏飞, 宁方飞. GPU平台上的叶轮机械CFD加速计算[J]. 航空动力学报, 2014, 29(5): 1154-1162. |
JU P F, NING F F. Accelerated CFD computing of turbomachinery on GPU platform[J]. Journal of Aerospace Power, 2014, 29(5): 1154-1162 (in Chinese). | |
9 | 张翔, 黄秀全. 基于图形处理器加速的叶轮机流场数值模拟研究[J]. 科学技术与工程, 2013, 13(11): 3195-3199. |
ZHANG X, HUANG X Q. An accelerated numerical simulation research on flows in turbomachines based on graphics hardware[J]. Science Technology and Engineering, 2013, 13(11): 3195-3199 (in Chinese). | |
10 | 曹文斌, 李桦, 谢文佳, 等. 应用多GPU的可压缩湍流并行计算[J]. 国防科技大学学报, 2015, 37(3): 78-83. |
CAO W B, LI H, XIE W J, et al. Parallel computation of compressible turbulence using multi-GPU clusters[J]. Journal of National University of Defense Technology, 2015, 37(3): 78-83 (in Chinese). | |
11 | 吴建松, 许声弟, 胡啸峰. 基于光滑粒子流体动力学方法与GPU并行计算的阶梯流数值模拟[J]. 科学技术与工程, 2016, 16(23): 59-63. |
WU J S, XU S D, HU X F. Numerical modeling of flooding over underground staircases using GPU-based SPH method[J]. Science Technology and Engineering, 2016, 16(23): 59-63 (in Chinese). | |
12 | ZIMMERMAN B J, WANG Z J, VISBAL M R. High-order spectral difference: Verification and acceleration using GPU computing[C]∥ Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013. |
13 | MIAO S M, ZHANG X, PARCHMENT O G, et al. A fast GPU based bidiagonal solver for computational aeroacoustics[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 22-39. |
14 | VERMEIRE B C, WITHERDEN F D, VINCENT P E. On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools[J]. Journal of Computational Physics, 2017, 334: 497-521. |
15 | VANDENHOECK R, LANI A. Implicit high-order flux reconstruction solver for high-speed compressible flows[J]. Computer Physics Communications, 2019, 242: 1-24. |
16 | LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780-801. |
17 | WANG Z J, LIU Y, MAY G, et al. Spectral difference method for unstructured grids II: Extension to the Euler equations[J]. Journal of Scientific Computing, 2007, 32(1): 45-71. |
18 | SUN Y Z, WANG Z J, LIU Y. High-order multidomain spectral difference method for the navier-stokes equations[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: AIAA2006-301. |
19 | GAO J H. A sliding-mesh interface method for three dimensional high order spectral difference solver[J]. Journal of Computational Physics, 2022, 454: 110988. |
20 | STANESCU D, HABASHI W G. 2N-storage low dissipation and dispersion runge-kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143(2): 674-681. |
21 | HERGT A, MEYER R, LIESNER K, et al. A new approach for compressor endwall contouring[C]∥Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 177-186. |
22 | DUAN Z W, JIA F L, WANG Z J. Sliding mesh and arbitrary periodic interface approaches for the high order FR/CPR method[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
23 | SUTLIFF D L. A 20 year retrospective of the advanced noise control fan–contributions to turbofan noise research[C]∥ Proceedings of the AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019. |
24 | HU F. On the construction of PML absorbing boundary condition for the non-linear Euler equations[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
25 | BU H X, HUANG X, ZHANG X. A compressive-sensing-based method for radial mode analysis of aeroengine fan noise[J]. Journal of Sound and Vibration, 2020, 464: 114930. |
26 | MANN A, PEROT F, KIM M S, et al. Advanced noise control fan direct aeroacoustics predictions using a lattice-boltzmann method[C]∥ Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Reston: AIAA, 2012. |
27 | MCALLISTER J, LOEW R, LAUER J, et al. The advanced noise control fan baseline measurements[C]∥ Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
28 | DAROUKH M, LE GARREC T, POLACSEK C. Low-speed turbofan aerodynamic and acoustic prediction with an isothermal lattice boltzmann method[J]. AIAA Journal, 2022, 60(2): 1152-1170. |
/
〈 |
|
〉 |