Material Engineering and Mechanical Manufacturing

Low⁃frequency and multi⁃bandgap noise reduction characteristics of acoustic metamaterial⁃based helicopter sidewall

  • Xiaole WANG ,
  • Ping SUN ,
  • Xin GU ,
  • Chunyu ZHAO ,
  • Zhenyu HUANG
Expand
  • 1.School of Sensing Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
    2.Key Laboratory of Aeroacoustics,AVIC Aerodynamics Research Institute,Harbin 150001,China

Received date: 2023-04-21

  Revised date: 2023-05-15

  Accepted date: 2023-06-19

  Online published: 2023-06-27

Supported by

National Natural Science Foundation of China(52003155);Joint Innovation Project of the Key Laboratory of Aeroacoustics

Abstract

To address the issue of low-frequency noise control in helicopter cabins below 500 Hz, a design paradigm of acoustic metamaterials is introduced for the acoustic treatment of the original helicopter sidewall. In this study, a low-frequency multi-bandgap acoustic metamaterial structure is proposed. The unit cell of the pro-posed acoustic metamaterial structure contains four cantilever beam-like resonant structures, which can open local-resonant complete bandgaps at the resonant frequencies of each resonant structure. Firstly, the dynamic model of a unit cell was established based on the finite element method. Through a numerical example, the band structure characteristics were analyzed, and the physical mechanism for generating multiple bandgaps was revealed. Secondly, experiments including the normal incident sound transmission loss experiment and the hammer-excitation vibration experiment were carried out to characterize the acoustic performance of a small-size uniform flat plate before and after the acoustic metamaterial was applied. The measured sound insulation enhancement region and the transfer function amplitude decay region were found to be consistent with the theoretically predicted bandgap frequency range, thus verifying the correctness of the theoretical model. Finally, in a reverberation chamber and full anechoic chamber test environment, the diffuse-field incident sound transmission loss experiment and the shaker-excitation vibration experiment were conducted to evaluate the acoustic performance of a large curved reinforced sidewall equipped with and without the acoustic metamaterial. It demonstrates that even when applied to complex structures, the bandgap effect of the acoustic metamaterial still shows high potential to improve the sound insulation performance and the vibroacoustic behavior of the original structures. This work aims to provide ideas and methods for reducing noise in helicopter cabins using ultrathin and lightweight acoustic metamaterials.

Cite this article

Xiaole WANG , Ping SUN , Xin GU , Chunyu ZHAO , Zhenyu HUANG . Low⁃frequency and multi⁃bandgap noise reduction characteristics of acoustic metamaterial⁃based helicopter sidewall[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 428901 -428901 . DOI: 10.7527/S1000-6893.2023.28901

References

1 倪先平, 朱清华. 直升机总体设计思路和方法发展分析[J]. 航空学报201637(1): 17-29.
  NI X P, ZHU Q H. Development of ideas and methods of helicopter general design[J]. Acta Aeronautica et Astronautica Sinica201637(1): 17-29 (in Chinese).
2 史勇杰, 徐国华, 招启军. 直升机气动声学[M]. 北京: 科学出版社, 2019: 133-168.
  SHI Y J, XU G H, ZHAO Q J. Helicopter aeroacoustics[M]. Beijing: Science Press, 2019: 133-168 (in Chinese).
3 刘孝辉, 徐新喜, 白松, 等. 军用直升机振动与噪声控制技术[J]. 直升机技术2013(1): 67-72.
  LIU X H, XU X X, BAI S, et al. Vibration and noise control technology on military helicopters[J]. Helicopter Technique2013(1): 67-72 (in Chinese).
4 吴希明, 牟晓伟. 直升机关键技术及未来发展与设想[J]. 空气动力学学报202139(3): 1-10.
  WU X M, MU X W. A perspective of the future development of key helicopter technologies[J]. Acta Aerodynamica Sinica202139(3): 1-10 (in Chinese).
5 BRENNAN M J, ELLIOTT S J, HERON K H. Noise propagation through helicopter gearbox support struts—An experimental study[J]. Journal of Vibration and Acoustics1998120(3): 695-704.
6 王风娇, 李明强, 彭海锋, 等. 直升机舱内主减速器噪声控制技术研究综述[J]. 南京航空航天大学学报202254(2): 179-190.
  WANG F J, LI M Q, PENG H F, et al. Overview of control technology for helicopter cabin noise from main gearbox[J]. Journal of Nanjing University of Aeronautics & Astronautics202254(2): 179-190 (in Chinese).
7 王风娇, 陆洋. 用于直升机舱内降噪的主减周期撑杆研究[J]. 航空学报201637(11): 3370-3384.
  WANG F J, LU Y. Research on gearbox periodic strut for helicopter cabin noise reduction[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3370-3384 (in Chinese).
8 徐国华, 史勇杰, 招启军, 等. 直升机旋翼气动噪声的研究新进展[J]. 航空学报201738(7): 520991.
  XU G H, SHI Y J, ZHAO Q J, et al. New research progress in helicopter rotor aerodynamic noise[J]. Acta Aeronautica et Astronautica Sinica201738(7): 520991 (in Chinese).
9 宋玉宝, 李征初, 黄奔, 等. 周期隔振设计用于直升机舱内噪声抑制的研究[J]. 振动工程学报202033(4): 764-771.
  SONG Y B, LI Z C, HUANG B, et al. Reduction of helicopter cabin noise using periodic isolation design[J]. Journal of Vibration Engineering202033(4): 764-771 (in Chinese).
10 查建平, 王风娇, 郭俊贤, 等. 直升机主减速器噪声源控制技术概述[J]. 航空学报202243(6): 526123.
  ZHA J P, WANG F J, GUO J X, et al. An overview of noise source control technology for helicopter main gearbox[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526123 (in Chinese).
11 CHEN Y, GHINET S, PRICE A, et al. Investigation of aircrew noise exposure levels and hearing protection solutions in helicopter cabin[J]. Journal of Intelligent Material Systems and Structures201728(8): 1050-1058.
12 宋玉宝, 温激鸿, 郁殿龙, 等. 板结构振动与噪声抑制研究综述[J]. 机械工程学报201854(15): 60-77.
  SONG Y B, WEN J H, YU D L, et al. Review of vibration and noise control of the plate structures[J]. Journal of Mechanical Engineering201854(15): 60-77 (in Chinese).
13 李文智, 曹瑶琴, 何志平. 基于材料及结构的直升机噪声抑制技术研究进展[J]. 航空材料学报202242(2): 1-10.
  LI W Z, CAO Y Q, HE Z P. Research progress of helicopter noise suppression technology based on materials/structures[J]. Journal of Aeronautical Materials202242(2): 1-10 (in Chinese).
14 GAO P X, YU T, ZHANG Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics202134(4): 83-114.
15 MA X J, LU Y, WANG F J. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control[J]. Journal of Sound and Vibration2017405: 187-207.
16 MISOL M. Active sidewall panels with virtual microphones for aircraft interior noise reduction[J]. Applied Sciences202010(19): 6828.
17 MISOL M. Full-scale experiments on the reduction of propeller-induced aircraft interior noise with active trim panels[J]. Applied Acoustics2020159: 107086.
18 KISHORE S E, SUJITHRA R, DHATREYI B. A review on latest acoustic noise mitigation materials[J]. Materials Today: Proceedings202147: 4700-4707.
19 GAO N S, ZHANG Z C, DENG J E, et al. Acoustic metamaterials for noise reduction: A review[J]. Advanced Materials Technologies20227(6): 2100698.
20 LU Q B, LI X, ZHANG X J, et al. Perspective: Acoustic metamaterials in future engineering[J]. Engineering202217: 22-30.
21 尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展202252(3): 508-586.
  YIN J F, CAI L, FANG X, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics202252(3): 508-586 (in Chinese).
22 李澔翔, 梁彬, 程建春. 声人工结构的声场调控研究进展[J]. 中国科学: 物理学 力学 天文学202252(4): 6-33.
  LI H X, LIANG B, CHENG J C. Recent advances in the artificial structure-based manipulation of the acoustic field[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 202252(4): 6-33 (in Chinese).
23 温激鸿, 郁殿龙, 赵宏刚. 人工周期结构中弹性波的传播: 振动与声学特性[M]. 北京: 科学出版社, 2015: 1-20.
  WEN J H, YU D L, ZHAO H G. Propagation of elastic waves in artificial periodic structures: Vibration and acoustic characteristics[M]. Beijing: Science Press, 2015: 1-20 (in Chinese).
24 XIAO Y, WEN J H, WEN X S. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators[J]. Journal of Sound and Vibration2012331(25): 5408-5423.
25 SONG Y B, FENG L P, WEN J H, et al. Reduction of the sound transmission of a periodic sandwich plate using the stop band concept[J]. Composite Structures2015128: 428-436.
26 DROZ C, ROBIN O, ICHCHOU M, et al. Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators[J]. The Journal of the Acoustical Society of America2019145(1): EL72.
27 WANG X L, LUO X D, HUANG Z Y. Hybrid metamaterials enable multifunctional manipulation of mechanical waves on solid-fluid interfaces[J]. Applied Physics Letters2020117(6): 061902.
28 SONG Y B, WEN J H, TIAN H, et al. Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study[J]. Journal of Sound and Vibration2020489: 115644.
29 TUFANO G, ERRICO F, ROBIN O, et al. K-space analysis of complex large-scale meta-structures using the inhomogeneous wave correlation method[J]. Mechanical Systems and Signal Processing2020135: 106407.
30 PIRES F A, CLAEYS C, DECKERS E, et al. The impact of resonant additions’ footprint on the stop band behavior of 1D locally resonant metamaterial realizations[J]. Journal of Sound and Vibration2021491: 115705.
31 PIRES F A, SANGIULIANO L, DENAYER H, et al. The use of locally resonant metamaterials to reduce flow-induced noise and vibration[J]. Journal of Sound and Vibration2022535: 117106.
32 SANGIULIANO L, REFF B, PALANDRI J, et al. Low frequency tyre noise mitigation in a vehicle using metal 3D printed resonant metamaterials[J]. Mechanical Systems and Signal Processing2022179: 109335.
33 ZHANG H, WEN J H, XIAO Y, et al. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches[J]. Journal of Sound and Vibration2015343: 104-120.
34 FANG X, WEN J H, BONELLO B, et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials[J]. Nature Communications20178: 1288.
35 WANG T, SHENG M P, DING X D, et al. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment[J]. Journal of Physics D: Applied Physics201851(11): 115306.
36 MA J G, SHENG M P, GUO Z W, et al. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators[J]. Journal of Sound and Vibration2018424: 94-111.
37 ZHAO G, XU M, WANG X, et al. Low-frequency vibroacoustic performance of an acoustic metamaterial plate with periodical single-stage multi-degree-of-freedom resonators attachment[J]. Physics Letters A2021412: 127593.
38 FANG X, SHENG P, WEN J H, et al. A nonlinear metamaterial plate for suppressing vibration and sound radiation[J]. International Journal of Mechanical Sciences2022228: 107473.
39 GIANNINI D, SCHEVENELS M, REYNDERS E P B. Rotational and multimodal local resonators for broadband sound insulation of orthotropic metamaterial plates[J]. Journal of Sound and Vibration2023547: 117453.
40 SHENG P, FANG X, DAI L, et al. Synthetical vibration reduction of the nonlinear acoustic metamaterial honeycomb sandwich plate[J]. Mechanical Systems and Signal Processing2023185: 109774.
41 CLAEYS C C, VERGOTE K, SAS P, et al. On the potential of tuned resonators to obtain low-frequency vibrational stop bands in periodic panels[J]. Journal of Sound and Vibration2013332(6): 1418-1436.
42 WANG G, WEN X S, WEN J H, et al. Two-dimensional locally resonant phononic crystals with binary structures[J]. Physical Review Letters200493(15): 154302.
43 朱席席, 肖勇, 温激鸿, 等. 局域共振型加筋板的弯曲波带隙与减振特性[J]. 物理学报201665(17): 316-330.
  ZHU X X, XIAO Y, WEN J H, et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate[J]. Acta Physica Sinica201665(17): 316-330 (in Chinese).
44 BORN M. Wave propagation in periodic structures[J]. Nature1946158(4026): 926.
45 LANGLEY R S. A note on the force boundary conditions for two-dimensional periodic structures with corner freedoms[J]. Journal of Sound and Vibration1993167(2): 377-381.
46 GOFFAUX C, SáNCHEZ-DEHESA J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters200288(22): 225502.
47 American Society for Testing and Materials. Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method: [S]. West Conshohocken, PA: ASTM International, 2019: 1-14.
48 SONG B H, BOLTON J S. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials[J]. The Journal of the Acoustical Society of America2000107(3): 1131-1152.
49 VAN BELLE L, CLAEYS C, DECKERS E, et al. The impact of damping on the sound transmission loss of locally resonant metamaterial plates[J]. Journal of Sound and Vibration2019461: 114909.
50 LIU B L, FENG L P, NILSSON A. Sound transmission through curved aircraft panels with stringer and ring frame attachments[J]. Journal of Sound and Vibration2007300(3-5): 949-973.
51 ZHOU J, BHASKAR A, ZHANG X. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material[J]. Journal of Sound and Vibration2014333(7): 1972-1990.
52 LIU Y, SEBASTIAN A. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel[J]. Journal of Sound and Vibration2015344: 399-415.
Outlines

/