Electronics and Electrical Engineering and Control

Short-term prediction of ionospheric TEC based on DOA-BP neural network

  • Yude NI ,
  • Miaoyu YAN ,
  • Ruihua LIU
Expand
  • School of Electronic Information and Automation,Civil Aviation Unversity of China,Tianjin 300300,China
E-mail: rhliu_cauc@163.com

Received date: 2023-03-16

  Revised date: 2023-05-11

  Accepted date: 2023-06-12

  Online published: 2023-06-27

Supported by

National Natural Science Foundation of China(U2233215)

Abstract

One of the largest error sources affecting the Required Navigation Performance (RNP) of the Global Navigation Satellite System (GNSS) is ionospheric delay. This delay is proportional to the Total Electron Content (TEC) of the ionosphere, so the accurate forecasting of TEC directly affects the RNP of GNSS. The Dingo Optimization Algorithm (DOA) proposed in 2021 was used to optimize the Back Propagation (BP) neural network, and a TEC short-term forecasting model was constructed based on the DOA-BP neural network. Using the ionospheric grid dot TEC values provided by the Center for Orbit Determination in Europe (CODE) as the data sets, the forecasting model was trained and tested to achieve high precision short-term forecasting of TEC values at different ionospheric grid points globally and in China. The predicted TEC values were compared with those predicted by the traditional BP neural network model and Sparrow Search Algorithm (SSA) optimized BP neural network model. It was found that compared with the traditional BP model, the DOA-BP model has significantly improved the forecasting accuracy of TEC. Compared with other optimized models (such as SSA-BP model), the DOA-BP model can also obtain better forecasting accuracy of TEC. The results show that the DOA-BP model can accurately reflect the change characteristics of ionospheric TEC in different time and space around the world, and can be used as a new method for short-term forecasting of ionospheric TEC.

Cite this article

Yude NI , Miaoyu YAN , Ruihua LIU . Short-term prediction of ionospheric TEC based on DOA-BP neural network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 328707 -328707 . DOI: 10.7527/S1000-6893.2023.28707

References

1 ICAO. Annex 10-aeronautical telecommunications Volume Ι radio navigation aids (six edition) [S]. Montreal Canada: International Civil Aviation Organization, 2018: 24-30.
2 李琛, 周晨, 王君明, 等. 基于经验电离层模型的短波时差定位理论分析[J]. 系统工程与电子技术202345(7): 1911-1919.
  LI C, ZHOU C, WANG J M, et al. Theoretical analysis of shortwave TDOA geolocation based on empirical ionospheric model[J]. Systems Engineering and Electronics202345(7): 1911-1919 (in Chinese).
3 FELTENS J, SCHAER S. IGS Products for the Ionosphere[C]∥Proceeding of the IGS AC Workshop. Piscataway: IEEE Press, 1998: 2345-2356.
4 FELTENS J. The activities of the ionosphere working group of the international GPS service (IGS)[J]. GPS Solutions20037(1): 41-46.
5 倪育德, 陈楚佳. 基于HHT的Ⅱ/Ⅲ类GBAS基准站故障检测[J]. 信号处理202036(7): 1075-1084.
  NI Y D, CHEN C J. The fault detection of CAT Ⅱ/Ⅲ GBAS reference stations using Hilbert-Huang transform[J]. Journal of Signal Processing202036(7): 1075-1084 (in Chinese).
6 熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报202265(7): 2365-2377.
  XIONG B, LI X L, WANG Y Q, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics202265(7): 2365-2377 (in Chinese).
7 陈秀德, 贾小林, 朱永兴, 等. 不同电离层格网产品的精度分析[J]. 大地测量与地球动力学201737(8): 849-855.
  CHEN X D, JIA X L, ZHU Y X, et al. Analysis the accuracy of different ionospheric grid products[J]. Journal of Geodesy and Geodynamics201737(8): 849-855 (in Chinese).
8 李涌涛, 赵昂, 李建文, 等. 单站区域电离层TEC建模及精度分析[J]. 武汉大学学报(信息科学版)202247(1): 69-78.
  LI Y T, ZHAO A, LI J W, et al. Regional ionospheric TEC modeling and accuracy analysis based on observations from a station[J]. Geomatics and Information Science of Wuhan University202247(1): 69-78 (in Chinese).
9 蒋磊, 孙蕊, 刘正午, 等. 基于GA-BP的中欧GNSS电离层误差建模与精度分析[J]. 北京航空航天大学学报202349(6): 1533-1542.
  JIANG L, SUN R, LIU Z W, et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics202349(6): 1533-1542 (in Chinese).
10 陈鹏, 姚宜斌, 吴寒. 利用时间序列分析预报电离层TEC[J]. 武汉大学学报(信息科学版)201136(3): 267-270.
  CHEN P, YAO Y B, WU H. TEC prediction of ionosphere based on time series analysis[J]. Geomatics and Information Science of Wuhan University201136(3): 267-270 (in Chinese).
11 高清文, 赵国忱. CEEMD与GRNN神经网络电离层TEC预报模型[J]. 全球定位系统202146(4): 76-84.
  GAO Q W, ZHAO G C. Ionospheric TEC forecast model of based on CEEMD and GRNN[J]. GNSS World of China202146(4): 76-84 (in Chinese).
12 袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报201838(1): 48-57.
  YUAN T J, CHEN Y H, LIU S Q, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science201838(1): 48-57 (in Chinese).
13 TEBABAL A, RADICELLA S M, NIGUSSIE M, et al. Local TEC modelling and forecasting using neural networks[J]. Journal of Atmospheric and Solar-Terrestrial Physics2018172: 143-151.
14 TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere202011(4): 316.
15 汤俊, 钟正宇, 李垠健, 等. 基于SSA-Elman神经网络的电离层TEC短期预报模型[J]. 大地测量与地球动力学202242(4): 378-383.
  TANG J, ZHONG Z Y, LI Y J, et al. Short-term prediction model of ionospheric TEC based on SSA-elman neural network[J]. Journal of Geodesy and Geodynamics202242(4): 378-383 (in Chinese).
16 XIONG P, ZHAI D L, LONG C, et al. Long short-term memory neural network for ionospheric total electron content forecasting over China[J]. Space Weather202119(4): 345-356.
17 ILUORE K, LU J Y. Long short-term memory and gated recurrent neural networks to predict the ionospheric vertical total electron content[J]. Advances in Space Research202270(3): 652-665.
18 LI Q F, YANG D, FANG H X. Two hours ahead prediction of the TEC over China using a deep learning method[J]. Universe20228(8): 405.
19 LIU G Y, GAO W, ZHANG Z X, et al. Prediction of ionospheric TEC based on the NARX neural network[J]. Mathematical Problems in Engineering20212021: 1-10.
20 GAO X, YAO Y B. A storm-time ionospheric TEC model with multichannel features by the spatiotemporal ConvLSTM network[J]. Journal of Geodesy202397(1): 9.
21 LEE S J, JI E Y, MOON Y J, et al. One-day forecasting of global TEC using a novel deep learning model[J]. Space Weather202119(1): 2020SW002600.
22 XIA G Z, LIU Y, WEI T F, et al. Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region[J]. Advances in Space Research202168(3): 1377-1389.
23 LEI D X, LIU H J, LE H J, et al. Ionospheric TEC prediction base on attentional BiGRU[J]. Atmosphere202213(7): 1039.
24 YANG D, LI Q F, FANG H X, et al. One day ahead prediction of global TEC using Pix2pixhd[J]. Advances in Space Research202270(2): 402-410.
25 XU Z Z, WANG W M, WANG B. Ionosphere TEC prediction based on Chaos[C]∥ISAPE. Piscataway: IEEE Press, 2013: 458-460.
26 陆建华, 王斌, 胡伍生. 利用BP神经网络改进电离层短期预报模型[J]. 测绘科学技术学报201734(1): 1-4.
  LU J H, WANG B, HU W S. Improved prediction model of ionospheric TEC by BP neural network[J]. Journal of Geomatics Science and Technology201734(1): 1-4 (in Chinese).
27 黄文喜, 祝芙英, 翟笃林, 等. BP神经网络和ARMA模型在中纬度TEC短期预测中的对比分析[J]. 大地测量与地球动力学202141(3): 262-267.
  HUANG W X, ZHU F Y, ZHAI D L, et al. Comparative analysis of BP neural network and ARMA model in short-term prediction of mid-latitude TEC[J]. Journal of Geodesy and Geodynamics202141(3): 262-267 (in Chinese).
28 SONG R, ZHANG X M, ZHOU C, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Advances in Space Research201862(4): 745-759.
29 DABBAKUTI J R K K, BHAVYA LAHARI G. Application of singular spectrum analysis using artificial neural networks in TEC predictions for ionospheric space weather[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201912(12): 5101-5107.
30 PERAZA-VáZQUEZ H, PE?A-DELGADO A F, ECHAVARRíA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering20212021: 1-19.
31 ALMAZáN-COVARRUBIAS J H, PERAZA-VáZQUEZ H, PE?A-DELGADO A F, et al. An improved dingo optimization algorithm applied to SHE-PWM modulation strategy[J]. Applied Sciences202212(3): 992.
32 BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions andDst [J]. Journal of Geophysical Research197580(31): 4204-4214.
33 张强, 赵齐乐. 武汉大学IGS电离层分析中心全球电离层产品精度评估与分析[J]. 地球物理学报201962(12): 4493-4505.
  ZHANG Q, ZHAO Q L. Evaluation and analysis of the global ionosphere maps from Wuhan University IGS Ionosphere Associate Analysis Center[J]. Chinese Journal of Geophysics201962(12): 4493-4505 (in Chinese).
34 LIU L B, WAN W X, NING B Q, et al. Climatology of the mean total electron content derived from GPS global ionospheric maps[J]. Journal of Geophysical Research: Space Physics2009114(A6): 2009JA014244.
35 LI Z S, YUAN Y B, WANG N B, et al. SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. Journal of Geodesy201589(4): 331-345.
Outlines

/