Electronics and Electrical Engineering and Control

Link safety criticality balanced scheduling for airborne time-sensitive network

  • Changxiao ZHAO ,
  • Jun DAI ,
  • Fangzheng DONG ,
  • Daojun LI
Expand
  • 1.School of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Key Laboratory of Civil Aircraft Airworthiness Technology,CAAC,Tianjin 300300,China
E-mail: cxzhao@cauc.edu.cn

Received date: 2023-04-14

  Revised date: 2023-05-15

  Accepted date: 2023-06-06

  Online published: 2023-06-16

Supported by

National Key Research and Development Program of China(2021YFB1600601);Natural Science Foundation of Tianjin(21JCQNJC00900);Tianjin Graduate Research Innovation Project (Aerospace Special)(2022SKYZ363);the Scientific Research Project of Tianjin Educational Committee(2019KJ134)

Abstract

To overcome the risk aggregation problem caused by multi-data mixed transmission in the airborne time-sensitive network, a scheduling method for balancing link safety criticality is proposed considering the requirements for real-timeliness and security of data transmission in the airborne time-sensitive network. The task safety criticality of the system is quantified based on expert evaluation and the entropy weight method. Task mapping is used to characterize the link safety criticality, and a scheduling model of the on-board TSN link safety criticality is constructed. A Link Safety Criticality Balancing (LSCB) scheduling method is constructed based on cooperative constraint programming. Compared with the Load Balancing (LB) and Strict Priority (SP) algorithms, the LSCB scheduling method can improve the link safety criticality balancing effect by 7.1% and 25% respectively in the scenario with 50 tasks, and by 17% and 18% respectively in the scenario with 100 tasks. The results show that the proposed LSCB can effectively mitigate risk pooling on the basis of ensuring the upper bound of task transmission delay.

Cite this article

Changxiao ZHAO , Jun DAI , Fangzheng DONG , Daojun LI . Link safety criticality balanced scheduling for airborne time-sensitive network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 328870 -328870 . DOI: 10.7527/S1000-6893.2023.28870

References

1 罗庆, 张涛, 单鹏, 等. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报202142(8): 525792.
  LUO Q, ZHANG T, SHAN P, et al. Generating reconfiguration blueprints for IMA systems based on improved Q-learning[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525792 (in Chinese).
2 何锋, 张立, 于思凡, 等. 基于网络演算的多窗口分区可调度性分析[J]. 航空学报202344(2): 326581.
  HE F, ZHANG L, YU S F, et al. Schedulability analysis for multi-window partition based on network calculus model[J]. Acta Aeronautica et Astronautica Sinica202344(2): 326581 (in Chinese).
3 赵长啸, 李道俊, 汪鹏辉, 等. 基于DDPG的综合化航电系统多分区任务分配优化方法[J/OL]. 电讯技术. (2023-03-18)[2023-04-01]..
  ZHAO C X, LI D J, WANG P H, TIAN Y. Optimization method of multi-partition task allocation for integrated avionics system based on DDPG[J]. Telecommunication Engineering. (2023-03-18)[2023-06-11]. (in Chinese).
4 FUCHSEN R. Preparing the next generation of IMA: a new technology for the scarlett program[C]∥2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2009: 5-8.
5 刘嘉琛, 董磊, 赵长啸, 等. 基于形式化方法的DIMA动态重构仿真与验证[J]. 系统工程与电子技术202244(4): 1282-1290.
  LIU J C, DONG L, ZHAO C X, et al. Simulation and verification of DIMA dynamic reconfiguration based on formal method[J]. Systems Engineering and Electronics202244(4): 1282-1290 (in Chinese).
6 何锋. 航空电子系统综合调度理论与方法[M]. 北京: 清华大学出版社, 2017: 7-11.
  HE F. Theory and approach to avionics system integrated scheduling[M]. Beijing: Tsinghua University Press, 2017: 7-11 (in Chinese).
7 赵露茜, 李峭, 林晚晴, 等. 基于随机网络演算的TTE网络时延分析[J]. 航空学报201637(6): 1953-1962.
  ZHAO L X, LI Q, LIN W Q, et al. Stochastic network calculus for analysis of latency on TTEthernet network[J]. Acta Aeronautica et Astronautica Sinica201637(6): 1953-1962 (in Chinese).
8 ZHAO L, HE F, LI E S, et al. Comparison of time sensitive networking (TSN) and TTEthernet[C]∥2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2018: 1-7.
9 KULTUR O R, BILGE H S. Comparative analysis of next generation aircraft data networks[C]∥IEEE EUROCON 2021-19th International Conference on Smart Technologies. Piscataway: IEEE Press, 2021: 317-320.
10 National Aeronautics and Space Administration. Orion spacecraft[EB/OL]. (2017-08-07)[2023-04-01]. .
11 DAI J, LI C X, WANG K N, et al. Application prospect of time-sensitive network in airborne communication network[J]. Journal of Physics: Conference Series20222253(1): 012035.
12 SEOL Y, HYEON D, MIN J H, et al. Timely survey of time-sensitive networking: past and future directions[J]. IEEE Access20219: 142506-142527.
13 易娟, 熊华钢, 何锋, 等. TTE网络流量转换策略及其延时性能保障调度算法研究[J]. 航空学报201435(4): 1071-1078.
  YI J, XIONG H G, HE F, et al. Research on traffic classes transformation strategy and real-time guarantee scheduling algorithm in TTEthernet[J]. Acta Aeronautica et Astronautica Sinica201435(4): 1071-1078 (in Chinese).
14 孔韵雯, 李峭, 熊华钢, 等. 片间综合化互连时间触发通信调度方法[J]. 航空学报201839(2): 321590.
  KONG Y W, LI Q, XIONG H G, et al. Time-triggered communication scheduling method for off-chip integrated interconnection[J]. Acta Aeronautica et Astronautica Sinica201839(2): 321590 (in Chinese).
15 Society of Automotive Engineers. Aerospace TSN profile: SAE AS6675 [S]. America: Society of Automotive Engineers, 2019.
16 陈春燕, 王红春, 王小辉. 基于强化学习的TTE网络调度规划方法设计与实现[J]. 实验技术与管理202340(4): 52-61, 74.
  CHEN C Y, WANG H C, WANG X H. Design and implementation of reinforcement learning-based scheduling panning method for TTE network[J]. Experimental Technology and Management202340(4): 52-61, 74 (in Chinese).
17 鲁俊, 何锋, 熊华钢, 等. 软件定义时间触发网络的调度算法优化[J]. 北京航空航天大学学报202147(5): 1004-1014.
  LU J, HE F, XIONG H G, et al. Scheduling algorithms optimization in software defined time-triggered network[J]. Journal of Beijing University of Aeronautics and Astronautics202147(5): 1004-1014 (in Chinese).
18 裴金川, 胡宇翔, 田乐, 等. 联合路由规划的时间敏感网络流量调度方法[J]. 通信学报202243(12): 54-65.
  PEI J C, HU Y X, TIAN L, et al. Time-sensitive network traffic scheduling method with joint routing planning[J]. Journal on Communications202243(12): 54-65 (in Chinese).
19 何锋, 李二帅, 周璇, 等. 机载网络时间触发通信调度设计优化与评价方法[J]. 航空学报202142(7): 324258.
  HE F, LI E S, ZHOU X, et al. Design optimization and evaluation method for time-triggered communication scheduling in airborne networks[J]. Acta Aeronautica et Astronautica Sinica202142(7): 324258 (in Chinese).
20 RAAGAARD M, POP P. Optimization algorithms for the scheduling of IEEE 802.1 time-sensitive networking (TSN)[R]. Lyngby:Technical University of Denmark, 2018.
21 DüRR F, NAYAK N G. No-wait packet scheduling for IEEE time-sensitive networks (TSN)[C]∥Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: ACM, 2016: 203-212.
22 LI Q, LI D, JIN X, et al. A simple and efficient time-sensitive networking traffic scheduling method for industrial scenarios[J]. Electronics20209(12): 2131.
23 VLK M, BREJCHOVá K, HANZáLEK Z, et al. Large-scale periodic scheduling in time-sensitive networks[J]. Computers & Operations Research2022137: 105512.
24 áLVAREZ I, BARRANCO M, PROENZA J. Reliability analysis of the proactive transmission of replicated frames mechanism over time-sensitive networking[J]. Sensors202121(24): 8427.
25 SYED A ALI, AYAZ S, LEINMüLLER T, et al. Fault-tolerant dynamic scheduling and routing for TSN based In-vehicle networks[C]∥2021 IEEE Vehicular Networking Conference (VNC). Piscataway: IEEE Press, 2021: 72-75.
26 赵长啸, 何锋, 阎芳, 等. 面向风险均衡的AFDX虚拟链路路径寻优算法[J]. 航空学报201839(1): 321435.
  ZHAO C X, HE F, YAN F, et al. Path optimization algorithm for AFDX virtual link to balance the network risk[J]. Acta Aeronautica et Astronautica Sinica201839(1): 321435 (in Chinese).
27 孙利娜, 黄宁, 张朔. 基于动态故障树的AFDX网络性能可靠性分析[J]. 计算机科学201643(10): 53-56, 62.
  SUN L N, HUANG N, ZHANG S. Performance reliability analysis of AFDX network based on dynamic fault tree[J]. Computer Science201643(10): 53-56, 62 (in Chinese).
28 LI F, LIU W Y, GAO W J, et al. Design and reliability analysis of a novel redundancy topology architecture[J]. Sensors202222(7): 2582.
29 赵长啸, 李浩, 张伟, 等. 涌现性视角下机载系统人机交互安全性分析[J]. 中国安全科学学报202232(11): 113-120.
  ZHAO C X, LI H, ZHANG W, et al. Human-computer interaction safety analysis of airborne system from perspective of emergence[J]. China Safety Science Journal202232(11): 113-120 (in Chinese).
30 ZHAO C X, ZHANG W, DONG F Z, et al. Research on resource allocation method of integrated avionics system considering fault propagation risk[J]. International Journal of Aerospace Engineering20222022: 1-19.
31 YANG H Y, SUN Y C, LI L B, et al. Safety analysis of integrated modular avionics system based on FTGPN method[J]. International Journal of Aerospace Engineering20202020: 1-12.
32 Society of Automotive Engineers. Guidelines for development of civil aircraft and systems: SAE ARP-4754A [S]. America: Society of Automotive Engineers, 2010.
33 JIN X, ZHANG W S. The optimization of objective weighting method based on relative importance[C]∥2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). Piscataway: IEEE Press, 2021: 1234-1237.
34 VLK M, HANZáLEK Z, BREJCHOVá K, et al. Enhancing schedulability and throughput of time-triggered traffic in IEEE 802.1Qbv time-sensitive networks[J]. IEEE Transactions on Communications202068(11): 7023-7038.
35 CRACIONAS S, OLIVER R S, CHMELíK M, et al. Scheduling real-time communication in IEEE 802.1Qbv time sensitive networks[C]∥ Proceedings of the 24th International Conference on Real-Time Networks and Systems. New York: Association for Computing Machinery, 2016: 183-192.
36 VILíM P, BARTáK R, ?EPEK O. Extension of On log n) filtering algorithms for the unary resource constraint to optional activities[J]. Constraints200510(4): 403-425.
37 WANG Q, MCCALLEY J D, ZHENG T X, et al. Solving corrective risk-based security-constrained optimal power flow with Lagrangian relaxation and Benders decomposition[J]. International Journal of Electrical Power & Energy Systems201675: 255-264.
38 郑重, 何锋, 李浩若, 等. 基于贪婪随机自适应搜索法的TTE通信调度算法[J]. 北京航空航天大学学报202147(11): 2268-2276.
  ZHENG Z, HE F, LI H R, et al. Scheduling algorithm of TTE network based on greedy randomized adaptive search procedure[J]. Journal of Beijing University of Aeronautics and Astronautics202147(11): 2268-2276 (in Chinese).
39 LABORIE P, ROGERIE J, SHAW P, et al. IBM ILOG CP optimizer for scheduling[J]. Constraints201823(2): 210-250.
40 汪硕, 黄玉栋, 黄韬, 等. 基于软件定义的时间敏感网络跨域调度机制[J]. 通信学报202142(10): 1-9.
  WANG S, HUANG Y D, HUANG T, et al. Software-defined cross-domain scheduling mechanism for time-sensitive networking[J]. Journal on Communications202142(10): 1-9 (in Chinese).
41 杨宏宇, 袁海航, 张良. 基于攻击图的主机安全评估方法[J]. 通信学报202243(2): 89-99.
  YANG H Y, YUAN H H, ZHANG L. Host security assessment method based on attack graph[J]. Journal on Communications202243(2): 89-99 (in Chinese).
42 张贵. 面向适航认证的综合化航电系统架构安全性评估方法研究[D]. 南京: 南京航空航天大学, 2016: 19-32.
  ZHANG G. Research on method of safety assessment of IMA architecture supporting airworthiness certification[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 19-32 (in Chinese).
43 尤海峰, 刘煜. 大型民用飞机IMA系统应用分析及发展建议[J]. 电讯技术201353(1): 110-116.
  YOU H F, LIU Y. Application analysis of and development suggestion for IMA system on large civil aircrafts[J]. Telecommunication Engineering201353(1): 110-116 (in Chinese).
Outlines

/