The force load exerted on the vehicle and the surface pressure exist a essential nonlinear behaviour and present a time-varying characteristic due to the complicated multiphase flow in the process of the vehicle crosses the water-air interface. For the load feature and the multiphase interface evolution, a force load measurement and multiphase interface visualization experiment is designed. A numerical framework, which adoptes the VOF (volume of fluid) multiphase model coupled with the overset mesh is applied to verify the experiment scheme. The force load, changed phase interface, pressure and vortex structure evolution under different maximum depths of water entry and the rotation speeds are simulated. The simulation results indicates that the force load in the upstream face plays a main role compared with that in another two directions, and its evolution shows a quasi-symmetric characteristic with the depth of water entry. In addition, the increased rotation speed enhances the force loads exerted on the vehicle. The high-pressure region always exists on the head of vehicle and the low-pressure region is distributed on the shoulder. And the influences of maximum depth of water entry on the pressure peak are limited. The distribution of streamline illustrates the complexity of the trans-medium flow, and the velocity peak exists in the tail of vehicle. The vortex structure will generate differentiation, growth, dissipation and extension due to the changed motion state and the action of different fluid in the trans-medium process. Besides, the decreased maximum depth of water entry result in more complex multiphase interface, vortex structure scale and vortex evolution characteristics.
[1] 谭骏怡, 胡俊华, 陈国明, 杨健, 葛阳. 水空跨介质航行器斜出水过程数值仿真[J].中国舰船研究,2019,14(6):104-121.
[2] 钱铖铖, 余春华, 穆青, 易文俊, 管军.发射速度和发射角度对射弹高速入水流动的影响[J].四川兵工学报,2019,040(007):35-39.
[3] 王永虎, 石秀华. 入水冲击问题研究的现状与进展[J].爆炸与冲击,2008,28(3):7.
[4] 邓见, 金楠, 周意琦, 路宽, 邵明雪. 仿飞鱼跨介质无人平台的探索研究[J].水动力学研究与进展:A辑,2020(1):6.
[5] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究[J].弹道学报,2020,32(1):8.
[6] Sun T Z, Shen J, Jiang Q, Li Y. Dynamics analysis of high-speed water entry of axisymmetric body using fluid-structure acoustic coupling method[J].Journal of Fluids and Structures,2022(111):103551.
[7] Wanger V H. Uber Stoβ und Gleitvorgange an der Oberflache von Flussigkeiten[J]. Zeitschrift fur Angewandte Mathematik und Mechanik,1932,12:Heft4.
[8] Logvinovich G V. Hydrodynamics of flows with free boundaries.1969.
[9] Korobkin A. Analytical models of water impact[J]. European Journal of Applied Mathematics,2004,15(6):821-838.
[10] Tassin A, Piro D J, Korobkin A A, Maki K J, Cooker M J. Two-dimensional water entry and exit of a body whose shape varies in time[J]. Journal of Fluids & Structures,2013,40:317-336.
[11] Hu J H, Xu B W, Feng J F, Qi D, Yang J, Wang C. Research on water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering,2017,31(2):202-209.
[12] Bisplinghoff R L, Doherty C S. Some studies of the impact of vee wedges on a water surface[J]. Journal of the Franklin Institute,1952,253(6):547-561.
[13] Tveitnes T, Fairlie-Clarke A C, Varyani K. An experimental investigation into the constant velocity water entry of wedge-shaped sections[J]. Ocean Engineering, 2008,35(14-15):1463-1478.
[14] Lee M, Longoria R G, Wilson D E. Cavity dynamics in high-speed water entry[J]. Physics of Fluids,1997,9(3):540-550.
[15] Wei Z Y, Hu C H. Experimental study on water entry of circular cylinders with inclined angles[J]. Journal of Marine Science and Technology,2015,20(4):722-738.
[16] Shi H H, Itoh M, Takami T. Optical observation of the supercavitation induced by high-speed water entry[J]. J. Fluids Eng,2000,122(4):806-810.
[17] Shi H H, Takami T. Some progress in the study of the water entry phenomenon[J]. Experiments in Fluids,2001,30(4):475-477.
[18] Zheng K Y, Zhao X Z, Yang Z J, Lv C F, Duan S C, Lin W D, Fang Z H. Numerical simulation of water entry of a wedge using a modified ghost-cell immersed boundary method[J]. Journal Of Marine Science And Technology,2020,25(2):589-608.
[19] Shi Y, Pan G, Yan G X, Yim S C, Jiang J. Numerical study on the cavity characteristics and impact loads of AUV water entry - ScienceDirect[J]. Applied Ocean Research,2019,89:44-58.
[20] Lu Y L, Hu J H, Chen G M, Liu A, Feng J F. Optimization of water-entry and water-exit maneuver trajectory for morphing unmanned aerial-underwater vehicle[J]. Ocean Engineering,2022,261:112015.
[21] 施红辉, 周东辉, 周栋, 贾会霞. 两连发射弹出入水的轴对称超空泡流动特性[J]. 空气动力学学报, 2020,38(6):1064-1074.
[22] 袁绪龙, 栗敏, 丁旭拓, 任伟, 周方旭. 跨介质航行器高速入水冲击载荷特性[J]. 兵工学报, 2021,42(7):1440-1449.
[23] 李国良, 尤天庆, 孔德才, 李静, 周伟江. 旋成体高速入水可压缩性影响研究[J]. 兵工学报, 2020,41(4):10.
[24] Li Y L, Feng J F, Hu J H, Yang J. Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed[J]. International Journal of Naval Architecture and Ocean Engineering,2018,10(2):188-200.
[25] 田北晨,刘涛涛,吴钦,黄彪.跨介质飞行器触水滑跳运动特性数值模拟[J].兵工学报,2022,43(3):586-598.
[26] 谢路毅, 曹留帅, 万德成. 基于重叠网格方法模拟双圆柱入水过程[J]. 水动力学研究与进展:A辑, 2021, 36(2):8.
[27] Wang Z, Feng P H, Liu G Q, Zhao X,Qin X H. Load and motion behaviors of ogive-nosed projectile during high-speed water entry with angle of attack[J].Ocean Engineering, 2022,266:112937.