ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Waverider forebody design method with longitudinal segments and multi-stage compression
Received date: 2023-03-27
Revised date: 2023-04-17
Accepted date: 2023-05-19
Online published: 2023-06-05
Supported by
Provincial or Ministerial Level Project
The air-breathing high speed vehicle is powered by a scramjet and uses the waverider as a forebody to provide compressed airflow for the intake. The compressibility of the forebody plays a decisive role in the performance of the aircraft and scramjet. The compression performance of the waverider is closely related to the Mach number and shock angle. The single-stage compression usually requires a larger shock angle to meet the requirements of the intake airflow pressure-boost ratio, and meanwhile, the forebody aerodynamic performance is reduced with the larger pitching moment and lower lift-to-drag ratio. To further improve the compression ability of the waverider forebody, a longitudinally segmented multi-stage compression waverider forebody design method is proposed, which can flexibly adjust the compression amount and length ratio according to the inlet need of intake. The produced high pressure area is mainly concentrated in the middle position of the lower waverider surface, which can match a wide range of intake and avoid more edge pressure leakage. Based on the method, the design code is developed, and the two-stage and three-stage cone-derived and osculating-cone waveriders are designed and analyzed, respectively. The numerical results show that the designed waverider has significantly improved compressibility and can simultaneously satisfy the high static pressure, high total pressure recovery and high lift-to-drag ratio with good engineering application prospects.
Lili CHEN , Jianxia LIU , Juntao ZHANG , Zheng GUO , Anping WU , Zhongxi HOU . Waverider forebody design method with longitudinal segments and multi-stage compression[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 128744 -128744 . DOI: 10.7527/S1000-6893.2023.28744
1 | 杨帆, 李小林, 刘小波, 等. 基于特征线理论的超声速进气道压缩面设计研究[J]. 空天防御, 2019, 2(1): 22-28. |
YANG F, LI X L, LIU X B, et al. Investigation on the supersonic inlet compression surface design based on the MOC method[J]. Air & Space Defense, 2019, 2(1): 22-28 (in Chinese). | |
2 | HUANG G P, ZHOU M A, CHEN J E, et al. A new combined design of inlet and forebody for high-speed vehicle[C]∥Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. |
3 | BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36. |
4 | 姚源, 陈萱. 美国发布SR-72高超声速飞机概念[J]. 中国航天, 2013(12): 39-41. |
YAO Y, CHEN X. The United States released the concept of SR-72 hypersonic aircraft[J]. Aerospace China, 2013(12): 39-41 (in Chinese). | |
5 | WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X─A reusable hypersonic test bed[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
6 | BISSINGER N C, BLAGOVESHCHENSKY N A, GUBANOV A A, et al. Improvement of forebody/inlet integration for hypersonic vehicle[J]. Aerospace Science and Technology, 1998, 2(8): 505-514. |
7 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
8 | VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191. |
9 | 易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3): 305-311. |
YI J, XIAO H, SHANG X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 305-311 (in Chinese). | |
10 | 张孙. 类X-43A高超声速飞行器气动力特性及其全流道流动特征的研究[D]. 南京: 南京航空航天大学, 2007. |
ZHANG S. Investigation of aerodynamic performance and inner flow characteristics of a hypersonic vehicle like X-43A[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). | |
11 | HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
12 | VAN WIE D, M?LDER S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]∥1992 Aerospace Design Conference. Reston: AIAA, 1992. |
13 | MCINTOSH K A, LINTON M, RUMPFKEIL M P, et al. Experimental and computational study of generic busemann inlets[C]∥Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
14 | BUSEMANN A. Die achsensymmetrische kegelige überschallstr?mung [J]. Luftfahrtforschung, 1942, 19(4): 137-144. |
15 | ZUO F Y, M?LDER S. Flow quality in an M-Busemann wavecatcher intake[J]. Aerospace Science and Technology, 2022, 121: 107376. |
16 | 何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. |
HE J X, JIN D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175 (in Chinese). | |
17 | 郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计[J]. 力学学报, 2022, 54(3): 601-611. |
ZHENG X G, ZHU C X, YOU Y C. Design of multistage compression waverider based on the localturning osculating cones method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611 (in Chinese). | |
18 | 刘嘉, 王发民. 乘波前体构型设计与压缩性能分析[J]. 工程力学, 2003, 20(6): 130-134. |
LIU J, WANG F M. Waverider configuration design and forebody compressibility analysis[J]. Engineering Mechanics, 2003, 20(6): 130-134 (in Chinese). | |
19 | 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078. |
QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese). | |
20 | SAHEBY E B, HUANG G P, HAYS A. Design of hypersonic forebody with submerged bump[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(9): 3153-3169. |
21 | 吕侦军, 王江峰, 伍贻兆, 等. 多级压缩锥导乘波体设计与分析[J]. 宇航学报, 2015, 36(5): 518-523. |
LYU Z J, WANG J F, WU Y Z, et al. Design and analysis of multistage compression cone-derived waverider configuration[J]. Journal of Astronautics, 2015, 36(5): 518-523 (in Chinese). | |
22 | 吕侦军. 水平起降高超声速运载器气动布局设计技术研究[D]. 南京: 南京航空航天大学, 2015. |
LYU Z J. Research on aerodynamic configuration design technology of horizontal takeoff and landing hypersonic launch vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
23 | 贺旭照, 倪鸿礼. 密切曲面锥乘波体: 设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. |
HE X Z, NI H L. Osculating curved cone (OCC) waverider: Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese). | |
24 | 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276. |
HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese). | |
25 | XUE L S, CHENG C, WANG C P, et al. An integration method based on a novel combined flow for aerodynamic configuration of strutjet engine[J]. Chinese Journal of Aeronautics, 2021, 34(9): 156-167. |
26 | LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266. |
27 | 陈立立. 参数化高超声速巡航飞行器组合布局设计与气动优化分析[D]. 长沙: 国防科技大学, 2019. |
CHEN L L. Combined configuration design and aerodynamic optimization analysis of hypersonic cruise vehicle with parametrization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
28 | CHEN L L, GUO Z, DENG X L, et al. Waverider configuration design with variable shock angle[J]. IEEE Access, 2019, 7: 42081-42093. |
29 | 罗文莉, 李道春, 向锦武. 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015, 36(1): 223-231. |
LUO W L, LI D C, XIANG J W. Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 223-231 (in Chinese). | |
30 | 陈立立, 郭正, 邓小龙, 等. 一种新型乘波体设计方法研究[J]. 航空工程进展, 2019, 10(5): 673-680, 690. |
CHEN L L, GUO Z, DENG X L, et al. Investigation on a novel waverider design method[J]. Advances in Aeronautical Science and Engineering, 2019, 10(5): 673-680, 690 (in Chinese). | |
31 | ANSYS Inc. FLUENT theory guide[M]. Canonsburg: ANSYS Inc., 2017. |
32 | TAKASHIMA N, LEWIS M J. Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 383-391. |
/
〈 |
|
〉 |