ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Graphite-based simulation method of wide temperature range and rapidly time-varying aerothermal load
Received date: 2023-03-22
Revised date: 2023-04-10
Accepted date: 2023-05-30
Online published: 2023-06-05
Supported by
National Natural Science Foundation of China(12090034);Aeronautical Science Foundation of China(2018ZF23012)
To solve the problem of large-range and rapid heating/cooling loading in hypersonic aircraft structural tests, a graphite-based simulation method of wide temperature range and rapidly time-varying aerothermal load is proposed. Firstly, a design process of ultra-high temperature environment based on flat graphite heating element is formed, and the thickness design and strength check method of flat graphite heating element considering the heating environment is proposed. Secondly, according to the demand of rapidly time-varying aerothermal load simulation, a fast heating method based on the decoupling of heating elements and test pieces is proposed, and the cooling efficiency of forced convection heat transfer in closed environment is analyzed. Finally, based on the above method, a test system for large-range and rapidly time-varying aerothermal load simulation is developed, and the test verification of ultra-high-temperature rapid heating/cooling is carried out for the carbon aerogel test piece. The research shows that the surface temperature response of the test piece is basically consistent with the design requirements, without noticeable hysteresis and slow transitions in temperature changes. For carbon-based flat-plate test pieces, the test system can achieve controlled multiple rapid heating and cooling within the range of 500-1 800 ℃, with heating/cooling rate reaching up to 10 ℃/s, thereby providing technical conditions for the thermal test of hypersonic aircraft structure.
Yi ZHANG , Binwen WANG , Jingtao WU , Linhua CONG , Hong CHEN , Shiping LI . Graphite-based simulation method of wide temperature range and rapidly time-varying aerothermal load[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(3) : 228732 -228732 . DOI: 10.7527/S1000-6893.2023.28732
1 | 王俊山, 冯志海, 徐林. 高超声速飞行器用热防护与热结构材料技术[M]. 北京: 科学出版社, 2021: 7-18. |
WANG J S, FENG Z H, XU L. Thermal protection and thermal structural material technology for hypersonic aircraft[M]. Beijing: Science Press, 2021: 7-18 (in Chinese). | |
2 | EASON T G, SHEPARD M J, PRATT D M. Task order 0015: Predictive capability for hypersonic structural response and life prediction: Phase 1 identification of knowledge gaps, volume 1-nonproprietary version: AFRL-RB-WP-TR-2010-3068[R]. Wright-Patterson Air Force Base: AFRL, 2010. |
3 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese). | |
4 | 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590. |
SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese). | |
5 | 孙得川, 李书月. 气动加热的数值仿真及其地面试验模拟技术[J]. 航空兵器, 2023, 30(3): 11-19. |
SUN D C, LI S Y. Numerical simulation of aerodynamic heating and its ground test simulation technology[J]. Aero Weaponry, 2023, 30(3): 11-19 (in Chinese). | |
6 | 朱言旦, 魏东, 刘深深, 等. 石英灯阵模拟非均匀气动加热的功率优化[J]. 航空学报, 2019, 40(6): 122761. |
ZHU Y D, WEI D, LIU S S, et al. Power optimization of non-uniform aerodynamic heating simulated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122761 (in Chinese). | |
7 | 吴大方, 潘兵, 高镇同, 等. 超高温、大热流、非线性气动热环境试验模拟及测试技术研究[J]. 实验力学, 2012, 27(3): 255-271. |
WU D F, PAN B, GAO Z T, et al. On the experimental simulation of ultra-high temperature, high heat flux and nonlinear aerodynamic heating environment and thermo-machanical testing technique[J]. Journal of Experimental Mechanics, 2012, 27(3): 255-271 (in Chinese). | |
8 | 张伟, 张正平, 李海波, 等. 高超声速飞行器结构热试验技术进展[J]. 强度与环境, 2011, 38(1): 1-8. |
ZHANG W, ZHANG Z P, LI H B, et al. Progress on thermal test technique of hypersonic vehicle structures[J]. Structure & Environment Engineering, 2011, 38(1): 1-8 (in Chinese). | |
9 | 吴大方, 商兰, 高镇同, 等. 1 700 ℃高温、有氧及时变环境下隔热性能试验研究[J]. 宇航学报, 2015, 36(9): 1083-1092. |
WU D F, SHANG L, GAO Z T, et al. Experimental research on thermal-insulation performance under high temperature/oxidation and time-varying environment up to 1 700 ℃[J]. Journal of Astronautics, 2015, 36(9): 1083-1092 (in Chinese). | |
10 | 吴大方, 商兰, 蒲颖, 等. 1 700 ℃有氧环境下高超声速飞行器轻质防热材料隔热性能试验研究[J]. 航天器环境工程, 2016, 33(1): 7-12. |
WU D F, SHANG L, PU Y, et al. Experimental research of thermal-insulation performance of lightweight thermal protection materials for hypersonic aircraft in oxidation environment up to 1 700 ℃[J]. Spacecraft Environment Engineering, 2016, 33(1): 7-12 (in Chinese). | |
11 | 卢明. 热防护材料气动热环境的试验模拟研究[D]. 大连: 大连理工大学, 2019. |
LU M. Experimental research on aerodynamic heating environment for thermal protection materials[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
12 | 董素君, 齐玢, 李志杰, 等. 低速高温燃气流热模拟试验方法和设备[J]. 航空动力学报, 2012, 27(5): 961-968. |
DONG S J, QI B, LI Z J, et al. Approach and facility for aerodynamic thermal test by lower speed and high-temperature gas flow[J]. Journal of Aerospace Power, 2012, 27(5): 961-968 (in Chinese). | |
13 | 张利嵩, 俞继军. 高超声速飞行器热防护技术[M]. 北京: 科学出版社, 2021. |
ZHANG L S, YU J J. Thermal protection technology of hypersonic vehicle[M]. Beijing: Science Press, 2021 (in Chinese). | |
14 | OKADA M, OKUNI T, INAGAKI M. Operation optimization of superhigh-temperature furnace using graphite heater[J]. Carbon, 2018, 139: 700-708. |
15 | OKADA M, OHTA N, YOSHIMOTO O, et al. Review on the high-temperature resistance of graphite in inert atmospheres[J]. Carbon, 2017, 116: 737-743. |
16 | 张凯. 石墨加热元件及其加热控制方法研究[D]. 北京: 中国航天科技集团公司, 2017. |
ZHANG K. Research on graphite heating element and its heating control methods[D]. Beijing: China Aerospace Science and Technology Corporation, 2017 (in Chinese). | |
17 | DELPAPA S V, MILHOAN J D, REMARK B J, et al. Thermal testing of ablators in the NASA Johnson space center radiant heat test facility[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
18 | 李俊楠, 邱义芬, 王奕荣, 等. 基于石墨加热阵的真空超高温环境模拟系统设计[C]∥第二届中国航空科学技术大会论文集, 2015: 837-841. |
LI J N, QIU Y F, WANG Y R, et al. Design of extreme high temperature vacuum environment simulation system based on graphite heating array[C]∥Proceedings of the Second China Aerospace Science and Technology Conference, 2015: 837-841 (in Chinese). | |
19 | 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2018. |
TAO W Q. Heat transfer[M]. Beijing: High Education Press, 2018 (in Chinese). | |
20 | 张淑蓉. 石墨加热元件在真空炉中的应用研究[J]. 工业加热, 2012, 41(5): 66-68. |
ZHANG S R. The application research of the graphite heating elements to the vacuum furnace[J]. Industrial Heating, 2012, 41(5): 66-68 (in Chinese). | |
21 | 刘志民, 成竹, 蒋军亮. 石墨加热器电极放电特性试验研究[J]. 装备环境工程, 2013, 10(3): 36-38, 50. |
LIU Z M, CHENG Z, JIANG J L. Experimental investigation of discharge characteristic of graphite heater electrode[J]. Equipment Environmental Engineering, 2013, 10(3): 36-38, 50 (in Chinese). |
/
〈 |
|
〉 |