Special Topic: Reusable Launch Vehicle Technology

Guidance and control for powered descent and landing of launch vehicles: Overview and outlook

  • Linkun HE ,
  • Wenchao XUE ,
  • Ran ZHANG ,
  • Huifeng LI
Expand
  • 1.School of Astronautics,Beihang University,Beijing 100191,China
    2.Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China
    3.School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China.

Received date: 2023-01-03

  Revised date: 2023-01-28

  Accepted date: 2023-05-25

  Online published: 2023-06-02

Supported by

National Natural Science Foundation of China(62122083);Youth Innovation Promotion Association of Chinese Academy of Science

Abstract

The cost of entrance into space can be significantly reduced by the application of reusable launch vehicle, which is an important component of the next-generation space transportation system. For reusable launch vehicles, the powered descent and landing phase is the key to successful recovery. Existing guidance and control methods for powered descent and landing are reviewed. Based on the analysis of existing methods, an intelligent modular integration method for guidance and control is proposed, and an outlook on the application of artificial intelligence methods in guidance and control of powered descent and landing is presented. Firstly, a complete model for guidance and control of powered descent and landing, along with the widely considered objectives and constraints, is established, and the main difficulties for guidance and control design are analyzed. Thereafter, existing guidance and control methods for powered descent and landing, i.e., the analytical guidance method, trajectory optimization based guidance method, learning based guidance method, the attitude control method, and the guidance and control integration method, are reviewed, and a comprehensive comparison of these methods is made by analyzing the considered equations of motion model, constraints, and objectives. Furthermore, a modular intelligent integration method is proposed for optimizing comprehensive objectives in guidance and control under uncertain models and disturbances. Finally, the development trends of guidance and control methods of powered descent and landing are summarized, and an outlook on the combination of artificial intelligence methods and guidance and control methods of powered descent and landing is given.

Cite this article

Linkun HE , Wenchao XUE , Ran ZHANG , Huifeng LI . Guidance and control for powered descent and landing of launch vehicles: Overview and outlook[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 628462 -628462 . DOI: 10.7527/S1000-6893.2023.28462

References

1 COPPER J. Single stage rocket concept selection and design: AIAA-1992-1383[R]. Reston: AIAA, 1992.
2 FREEMAN D C, TALAY T A, AUSTIN R E. Reusable launch vehicle technology program 1[J]. Acta Astronautica199741(11): 777-790.
3 INATANI Y, NARUO Y, YONEMOTO K. Concept and preliminary flight testing of a fully reusable rocket vehicle[J]. Journal of Spacecraft and Rockets200138(1): 36-42.
4 SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket[C]∥ 2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-18.
5 宋征宇, 王聪. 运载火箭返回着陆在线轨迹规划技术发展[J]. 宇航总体技术20193(6): 1-12.
  SONG Z Y, WANG C. Development of online trajectory planning technology for launch vehicle return and landing[J]. Astronautical Systems Engineering Technology20193(6): 1-12 (in Chinese).
6 MALYUTA D, YU Y, ELANGO P, et al. Advances in trajectory optimization for space vehicle control[J]. Annual Reviews in Control202152: 282-315.
7 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报202142(11): 525050.
  SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525050 (in Chinese).
8 SONG Z Y, WANG C, THEIL S, et al. Survey of autonomous guidance methods for powered planetary landing[J]. Frontiers of Information Technology & Electronic Engineering202021(5): 652-674.
9 张亮, 李丹钰, 崔乃刚, 等 .垂直起降重复使用火箭全剖面飞行预设性能控制[J]. 航空学报202344(3): 328103.
  ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical takeoff and vertical landing vehicle[J]. Acta Aeronautica et Astronautica Sinica202344(3): 328103 (in Chinese).
10 SIMPLíCIO P, MARCOS A, BENNANI S. Reusable launchers: Development of a coupled flight mechanics, guidance, and control benchmark[J]. Journal of Spacecraft and Rockets202057(1): 74-89.
11 SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints: AIAA-2016-0378[R]. Reston: AIAA, 2016.
12 REYNOLDS T P, SZMUK M, MALYUTA D, et al. Dual quaternion-based powered descent guidance with state-triggered constraints[J]. Journal of Guidance, Control, and Dynamics202043(9): 1584-1599.
13 LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics201842(1): 65-77.
14 REYNOLDS T, SZMUK M, MALYUTA D, et al. A state-triggered line of sight constraint for 6-DoF powered descent guidance problems: AIAA-2019-0924[R]. Reston: AIAA, 2019.
15 SZMUK M, REYNOLDS T, ACIKMESE B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints: AIAA-2019-0926[R]. Reston: AIAA, 2019.
16 ROSS I. How to find minimum-fuel controllers: AIAA-2004-5346[R]. Reston: AIAA, 2004.
17 BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered-descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics201033(4): 1161-1171.
18 CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight: AIAA-1964-0638[R]. Reston: AIAA, 1964.
19 KLUMPP A. A manually retargeted automatic descent and landing system for lem:AIAA-1966-1863[R]. Reston: AIAA, 1966.
20 BENNETT F. Lunar descent and ascent trajectories:AIAA-1970-25[R]. Reston: AIAA, 1970.
21 KLUMPP A R. Apollo lunar descent guidance[J]. Automatica197410(2): 133-146.
22 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报201940(7): 322782.
  WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322782 (in Chinese).
23 LU P. Augmented Apollo powered descent guidance[J]. Journal of Guidance, Control, and Dynamics201842(3): 447-457.
24 LU P. Theory of fractional-polynomial powered descent guidance[J]. Journal of Guidance, Control, and Dynamics202043(3): 398-409.
25 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学: 技术科学201444(4): 377-384.
  ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica (Technologica)201444(4): 377-384 (in Chinese).
26 MCINNES C R. Path shaping guidance for terminal lunar descent[J]. Acta Astronautica199536(7): 367-377.
27 MCINNES C R. Gravity turn descent with quadratic air drag[J]. Journal of Guidance, Control, and Dynamics199720(2): 393-394.
28 MCINNES C R. Gravity-turn descent from low circular orbit conditions[J]. Journal of Guidance, Control, and Dynamics200326(1): 183-185.
29 王大轶, 李铁寿, 马兴瑞. 月球探测器重力转弯软着陆的最优制导[J]. 自动化学报200228(3): 385-390.
  WANG D Y, LI T S, MA X R. Optimal guidance for lunar gravity-turn descent[J]. Acta Automatica Sinica200228(3): 385-390 (in Chinese).
30 MCINNES C R. Direct adaptive control for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics199922(2): 373-375.
31 MCINNES C R. Nonlinear transformation methods for gravity-turn descent[J]. Journal of Guidance, Control, and Dynamics199619(1): 247-248.
32 王大轶, 李铁寿, 严辉, 等. 月球引力转弯软着陆的制导控制研究[J]. 中国空间科学技术200020(5): 17-23, 29.
  WANG D Y, LI T S, YAN H, et al. Guidance control for lunar gravity-turn descent[J]. Chinese Space Science and Technology200020(5): 17-23, 29 (in Chinese).
33 朱建丰, 徐世杰. 月球重力转弯软着陆的模糊变结构控制[J]. 北京航空航天大学学报200733(5): 539-543.
  ZHU J F, XU S J. Fuzzy variable structure control for lunar gravity-turn landing[J]. Journal of Beijing University of Aeronautics and Astronautics200733(5): 539-543 (in Chinese).
34 CITRON S J, DUNIN S E, MEISSINGER H F. A terminal guidance technique for lunar landing[J]. AIAA Journal19642(3): 503-509.
35 CHOMEL C T, BISHOP R H. Analytical lunar descent guidance algorithm[J]. Journal of Guidance, Control, and Dynamics200932(3): 915-926.
36 YANG R Q, LIU X F. Gravity-turn-based precise landing guidance for reusable rockets[C]∥ Advances in Guidance, Navigation and Control. Singapore: Springer, 2022: 3423-3434.
37 CHENG R K, CONRAD D A, MEREDITH C M. Design considerations for Surveyor guidance[J]. Journal of Spacecraft and Rockets19663(11): 1569-1576.
38 INGOLDBY R N. Guidance and control system design of the Viking planetary lander[J]. Journal of Guidance and Control19781(3): 189-196.
39 SOSTARIC R, REA J. Powered descent guidance methods for the moon and Mars: AIAA-2005-6287[R]. Reston: AIAA, 2005.
40 PLOEN S, ACIKMESE B, WOLF A. A comparison of powered descent guidance laws for Mars pinpoint landing: AIAA-2006-6676[R]. Reston: AIAA, 2006.
41 NAJSON F, MEASE K D. Computationally inexpensive guidance algorithm for fuel-efficient terminal descent[J]. Journal of Guidance, Control, and Dynamics200629(4): 955-964.
42 UENO S, YAMAGUCHI Y. 3-dimensional near-minimum fuel guidance law of a lunar landing module: AIAA-1999-3983[R]. Reston: AIAA, 1999.
43 CHRISTOPHER N D. An optimal guidance law for planetary landing: AIAA-1997-3709[R]. Reston: AIAA, 1997.
44 EBRAHIMI B, BAHRAMI M, ROSHANIAN J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica200862(10-11): 556-562.
45 GUO Y N, HAWKINS M, WIE B. Applications of generalized zero-effort-miss/zero-effort-velocity feedback guidance algorithm[J]. Journal of Guidance, Control, and Dynamics201336(3): 810-820.
46 SIMPLíCIO P, MARCOS A, BENNANI S. Guidance of reusable launchers: Improving descent and landing performance[J]. Journal of Guidance, Control, and Dynamics201942(10): 2206-2219.
47 GUO Y N, HAWKINS M, WIE B. Optimal feedback guidance algorithms for planetary landing and asteroid intercept[J]. Advances in the Astronautical Sciences2012142: 2913-2931.
48 ZHOU L Y, XIA Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase[J]. Advances in Space Research201454(11): 2446-2455.
49 GUO Y N, HAWKINS M, WIE B. Waypoint-optimized zero-effort-miss/zero-effort-velocity feedback guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics201336(3): 799-809.
50 FURFARO R, GAUDET B, WIBBEN D R, et al. Development of non-linear guidance algorithms for asteroids close-proximity operations: AIAA-2013-4711[R]. Reston: AIAA, 2013.
51 MEDITCH J. On the problem of optimal thrust programming for a lunar soft landing[J]. IEEE Transactions on Automatic Control19649(4): 477-484.
52 HULL D G. Thrust programs for minimum propellant consumption during the vertical take-off and landing of a rocket[J]. Journal of Optimization Theory and Applications19671(1): 53-69.
53 LAWDEN D F. Optimal trajectories for space navigation[M]. London: Butterworths, 1963.
54 TOPCU U, CASOLIVA J, MEASE K. Fuel efficient powered descent guidance for Mars landing: AIAA-2005-6286[R]. Reston: AIAA, 2005.
55 YOU S X, DAI R, REA J R. Theoretical analysis of fuel-optimal powered descent problem with state constraints[J]. Journal of Guidance, Control, and Dynamics202245(12): 2350-2359.
56 REA J, BISHOP R. Analytical dimensional reduction of a fuel optimal powered descent subproblem: AIAA-2010-8026[R]. Reston: AIAA, 2010.
57 LU P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics201741(4): 813-826.
58 ACIKMESE B, AUNG M, CASOLIVA J, et al. Flight testing of trajectories computed by G-FOLD: Fuel optimal large divert guidance algorithm for planetary landing[J]. Advances in the Astronautical Sciences2013148: 386.
59 DUERI D, ZHANG J, ACIKMESE B. Automated custom code generation for embedded, real-time second order cone programming[J]. IFAC Proceedings Volumes201447(3): 1605-1612.
60 DUERI D, ACIKMESE B, SCHARF D P, et al. Customized real-time interior-point methods for onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics201640(2): 197-212.
61 MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently[J]. IEEE Control Systems202242(5): 40-113.
62 ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics200730(5): 1353-1366.
63 ACIKMESE B, BLACKMORE L. Lossless convexification of a class of optimal control problems with non-convex control constraints[J]. Automatica201147(2): 341-347.
64 ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology201321(6): 2104-2113.
65 CARSON J M, ACIKMESE B, BLACKMORE L, et al. Capabilities of convex powered-descent guidance algorithms for pinpoint and precision landing[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8.
66 CARSON J M, ACIKMESE B, BLACKMORE L. Lossless convexification of powered-descent guidance with non-convex thrust bound and pointing constraints[C]∥ Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 2651-2656.
67 MALYUTA D, ACIKMESE B. Lossless convexification of optimal control problems with semi-continuous inputs[J]. IFAC-PapersOnLine202053(2): 6843-6850.
68 BLACKMORE L, ACIKMESE B, CARSON J M. Lossless convexification of control constraints for a class of nonlinear optimal control problems[J]. Systems & Control Letters201261(8): 863-870.
69 HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with linear state constraints[C]∥ 52nd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2013: 7113-7118.
70 HARRIS M W, ACIKMESE B. Lossless convexification of non-convex optimal control problems for state constrained linear systems[J]. Automatica201450(9): 2304-2311.
71 HARRIS M W, ACIKMESE B. Lossless convexification for a class of optimal control problems with quadratic state constraints[C]∥ 2013 American Control Conference. Piscataway: IEEE Press, 2013: 3415-3420.
72 HARRIS M W, ACIKMESE B. Maximum divert for planetary landing using convex optimization[J]. Journal of Optimization Theory and Applications2014162(3): 975-995.
73 LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics201437(3): 750-765.
74 MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥ 2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 3636-3641.
75 邵楠, 闫晓东. 火箭垂直回收多阶段最优轨迹规划方法[J]. 宇航学报201940(10): 1187-1196.
  SHAO N, YAN X D. Multi-stage trajectory optimization for vertical pin-point landing of a reusable launch vehicle[J]. Journal of Astronautics201940(10): 1187-1196 (in Chinese).
76 WANG J B, CUI N G. A pseudospectral-convex optimization algorithm for rocket landing guidance: AIAA-2018-1871[R]. Reston: AIAA, 2018.
77 王劲博, 崔乃刚, 郭继峰, 等. 火箭返回着陆问题高精度快速轨迹优化算法[J]. 控制理论与应用201835(3): 389-398.
  WANG J B, CUI N G, GUO J F, et al. High precision rapid trajectory optimization algorithm for launch vehicle landing[J]. Control Theory & Applications201835(3): 389-398 (in Chinese).
78 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报202041(11): 624051.
  WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica202041(11): 624051 (in Chinese).
79 WANG J W, ZHANG R, LI H F. Onboard optimization of multi-arc trajectories with constraints on duration of arcs[J]. Acta Astronautica2022192: 434-442.
80 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报202142(11): 1416-1426.
  HAO Z M, ZHANG R, WANG J W, et al. Real-time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics202142(11): 1416-1426 (in Chinese).
81 WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics201942(5): 1078-1092.
82 XIONG F F, LI C, ZHAO Y, et al. Rocket landing guidance using convex optimization and proportional navigation considering performance-limited engine[J]. Acta Astronautica2022201: 209-223.
83 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报202041(5): 323606.
  AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica202041(5): 323606 (in Chinese).
84 LI J Q, LONG Y S, SU M, et al. Fault-tolerant guidance of rocket vertical landing phase based on MPC framework[J]. International Journal of Aerospace Engineering20222022: 1-11.
85 BLACKMORE L. Autonomous precision landing of space rockets[C]∥ Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium. Washington: The Bridge, 201646: 15-20.
86 SCHARF D P, A??KME?E B, DUERI D, et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics201640(2): 213-229.
87 REYNOLDS T, MALYUTA D, MESBAHI M, et al. Funnel synthesis for the 6-DOF powered descent guidance problem: AIAA-2021-0504[R]. Reston: AIAA, 2021.
88 SáNCHEZ-SáNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics201841(5): 1122-1135.
89 WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications202335(9): 6383-6404.
90 YOU S X, WAN C H, DAI R, et al. Learning-based onboard guidance for fuel-optimal powered descent[J]. Journal of Guidance, Control, and Dynamics202144(3): 601-613.
91 HENDRIX S G, KENNY V, YOU S X, et al. Experimental testing for a learning-based powered-descent guidance algorithm: AIAA-2022-0952. Reston: AIAA, 2022.
92 LI W B, GONG S P. Free final-time fuel-optimal powered landing guidance algorithm combing lossless convex optimization with deep neural network predictor[J]. Applied Sciences202212(7): 3383.
93 SONG Y, MIAO X Y, CHENG L, et al. The feasibility criterion of fuel-optimal planetary landing using neural networks[J]. Aerospace Science and Technology2021116: 106860.
94 何林坤, 张冉, 龚庆海. 基于强化学习的可回收运载火箭着陆制导[J]. 空天防御20214(3): 33-40.
  HE L K, ZHANG R, GONG Q H. Landing guidance of reusable launch vehicle based on reinforcement learning[J]. Air & Space Defense20214(3): 33-40 (in Chinese).
95 FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica2020171: 156-171.
96 D’AMBROSIO A, SCHIASSI E, CURTI F, et al. Physics-informed neural networks applied to a series of constrained space guidance problems[C]∥ 2021 AAS/AIAA Astrodynamics Specialist Conference. American Astronautical Society, 2021.
97 崔乃刚, 吴荣, 韦常柱, 等. 火箭垂直返回双幂次固定时间收敛滑模控制方法[J]. 哈尔滨工业大学学报202052(4): 15-24.
  CUI N G, WU R, WEI C Z, et al. Double-order power fixed-time convergence sliding mode control method for launch vehicle vertical returning[J]. Journal of Harbin Institute of Technology202052(4): 15-24 (in Chinese).
98 ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica2019159: 362-370.
99 LIANG X H, WANG Q, HU C H, et al. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults[J]. Aerospace Science and Technology2020107: 106314.
100 JU X Z, WEI C Z, XU H C, et al. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints[J]. ISA Transactions2022129: 55-72.
101 JU X Z, WEI C Z, ZHANG L, et al. Semi-globally smooth control for VTVL reusable launch vehicle under actuator faults and attitude constraints[J]. Acta Astronautica2022191: 528-546.
102 KWON J W, LEE D H, BANG H. Virtual trajectory augmented landing control based on dual quaternion for lunar lander[J]. Journal of Guidance, Control, and Dynamics201639(9): 2044-2057.
103 Van LEEUWEN S, SKIBIK T, NICOTRA M, et al. A nonlinear predictive control strategy for landing on an asteroid[C]∥ 2022 American Control Conference (ACC). Piscataway: IEEE Press, 2022: 443-449.
104 JOHNSON M. A parameterized approach to the design of lunar lander attitude controllers: AIAA-2006-6564[R]. Reston: AIAA, 2006.
105 SAGLIANO M, DUMKE M, THEIL S. Simulations and flight tests of a new nonlinear controller for the EAGLE lander[J]. Journal of Spacecraft and Rockets201856(1): 259-272.
106 ORR J S, SHTESSEL Y B. Lunar spacecraft powered descent control using higher-order sliding mode techniques[J]. Journal of the Franklin Institute2012349(2): 476-492.
107 伊鑫, 潘豪, 黄聪, 等. 垂直回收运载火箭高精度姿态控制技术[J]. 深空探测学报(中英文)20229(5): 492-497.
  YI X, PAN H, HUANG C, et al. High precision attitude control technology of vertical landing returning rocket[J]. Journal of Deep Space Exploration20229(5): 492-497 (in Chinese).
108 李璟澜, 杨秦敏. 带预设性能的火箭垂直着陆段姿态自适应控制设计[J]. 宇航总体技术20204(5): 1-7.
  LI J L, YANG Q M. Adaptive attitude control in the landing phase of rocket vertical recovery with prescribed performance[J]. Astronautical Systems Engineering Technology20204(5): 1-7 (in Chinese).
109 SIMPLíCIO P, MARCOS A, BENNANI S. Launcher flight control design using robust wind disturbance observation[J]. Acta Astronautica2021186: 303-318.
110 WONG E C, SINGH G, MASCIARELLI J P. Guidance and control design for hazard avoidance and safe landing on Mars[J]. Journal of Spacecraft and Rockets200643(2): 378-384.
111 DELAUNE J, DE ROSA D, HOBBS S. Guidance and control system design for lunar descent and landing: AIAA-2010-8028[R]. Reston: AIAA, 2010.
112 REW D Y, JU G, LEE S, et al. Control system design of the Korean lunar lander demonstrator[J]. Acta Astronautica201494(1): 328-337.
113 STENGEL R F. Manual attitude control of the lunar module[J]. Journal of Spacecraft and Rockets19707(8): 941-948.
114 BILIMORIA K D. Effects of control power and guidance cues on lunar lander handling qualities[J]. Journal of Spacecraft and Rockets200946(6): 1261-1271.
115 BIHARI B. Challenges of roll orientation with respect to vehicle heading at touchdown for the Orion command module: AAS 08-068[R]. Breckenridge: American Astronautical Society, 2008.
116 YAMASHITA T, UO M, HASHIMOTO T. Nonlinear six-degree-of-freedom control for flexible spacecraft[J]. IFAC Proceedings Volumes200134(15): 344-349.
117 ZHANG H H, LI J, WANG Z G, et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space: Science & Technology20212021: 9823609.
118 HUANG X Y, XU C, HU J C, et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission[J]. Astrodynamics20226(1): 3-16.
119 WALL J H, ORR J S, VANZWIETEN T S. Space launch system implementation of adaptive augmenting control:AIAA 14-051[R]. Breckenridge: American Astronautical Society, 2014.
120 HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics200956(3): 900-906.
121 韩京清. 自抗扰控制技术[J]. 前沿科学20071(1): 24-31.
  HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science20071(1): 24-31 (in Chinese).
122 果琳丽, 谷良贤, 田林, 等. 载人月面着陆器动力下降段自适应姿态控制[J]. 哈尔滨工业大学学报201345(5): 119-123.
  GUO L L, GU L X, TIAN L, et al. Adaptive attitude control for manned lunar lander during the powered descent phase[J]. Journal of Harbin Institute of Technology201345(5): 119-123 (in Chinese).
123 SUN L, SUN G, JIANG J J. Adaptive guidance and control of uncertain lunar landers in terminal landing phases[J]. Mechanical Systems and Signal Processing2020142: 106763.
124 WIDNALL W S. The minimum-time thrust-vector control law in the Apollo lunar-module autopilot[J]. IFAC Proceedings Volumes19703(1): 136-153.
125 PONTANI M, CELANI F, CARLETTA S. Lunar descent and landing via two-phase explicit guidance and pulse-modulated reduced-attitude control: AIAA-2022-0252[R]. Reston: AIAA, 2022.
126 BOSKOVIC J D, JACKSON J A, MEHRA R K, et al. Adaptive fault tolerant control design for a model of DC-X dynamics[C]∥ 2008 American Control Conference. Piscataway: IEEE Press, 2008: 1046-1051.
127 SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art integrated guidance and control systems in unmanned vehicles: A review[J]. IEEE Systems Journal202115(3): 3312-3323.
128 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器202330(1): 1-10.
  GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry202330(1): 1-10 (in Chinese).
129 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用201330(12): 1511-1520.
  XUE W C, HUANG C D, HUANG Y. Design methods for the integrated guidance and control system[J]. Control Theory & Applications201330(12): 1511-1520 (in Chinese).
130 SHTESSEL Y B, TOURNES C H. Integrated higher-order sliding mode guidance and autopilot for dual control missiles[J]. Journal of Guidance, Control, and Dynamics200932(1): 79-94.
131 董飞垚, 雷虎民, 周池军, 等. 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报201334(9): 2212-2218.
  DONG F Y, LEI H M, ZHOU C J, et al. Research of integrated robust high order sliding mode guidance and control for missiles[J]. Acta Aeronautica et Astronautica Sinica201334(9): 2212-2218 (in Chinese).
132 SEYEDIPOUR S H, JEGARKANDI M F, SHAMAG HDARI S. Nonlinear integrated guidance and control based on adaptive backstepping scheme[J]. Aircraft Engineering and Aerospace Technology201789(3): 415-424.
133 舒燕军, 唐硕. 轨控式复合控制导弹制导与控制一体化反步设计[J]. 宇航学报201334(1): 79-85.
  SHU Y J, TANG S. Integrated guidance and control backstepping design for blended control missile based on NDO[J]. Journal of Astronautics201334(1): 79-85 (in Chinese).
134 张尧, 郭杰, 唐胜景, 等. 导弹制导与控制一体化三通道解耦设计方法[J]. 航空学报201435(12): 3438-3450.
  ZHANG Y, GUO J, TANG S J, et al. Integrated missile guidance and control three-channel decoupling design method[J]. Acta Aeronautica et Astronautica Sinica201435(12): 3438-3450 (in Chinese).
135 CHWA D, CHOI J Y, ANAVATTI S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics[J]. IEEE Transactions on Control Systems Technology200614(1): 112-123.
136 刘晓东, 黄万伟, 杜立夫. 含攻击角度约束的三维制导控制一体化鲁棒设计方法[J]. 控制理论与应用201633(11): 1535-1542.
  LIU X D, HUANG W W, DU L F. Robust design approach of three-dimensional integrated guidance and control containing impact angle constraints[J]. Control Theory & Applications201633(11): 1535-1542 (in Chinese).
137 ZHANG F, DUAN G R. Integrated translational and rotational control for the terminal landing phase of a lunar module[J]. Aerospace Science and Technology201327(1): 112-126.
138 CORTéS-MARTíNEZ R, KUMAR K D, RODRíGUE Z-CORTéS H. Precise power descent control of a lunar lander using a single thruster[J]. Acta Astronautica2021186: 473-485.
139 MALYUTA D, REYNOLDS T, SZMUK M, et al. Discretization performance and accuracy analysis for the rocket powered descent guidance problem: AIAA-2019-0925[R]. Reston: AIAA, 2019.
140 TOPCU U, CASOLIVA J, MEASE K D. Minimum-fuel powered descent for Mars pinpoint landing[J]. Journal of Spacecraft and Rockets200744(2): 324-331.
141 REYNOLDS T P, MESBAHI M. Optimal planar powered descent with independent thrust and torque[J]. Journal of Guidance, Control, and Dynamics202043(7): 1225-1231.
142 REYNOLDS T, MALYUTA D, MESBAHI M, et al. A real-time algorithm for non-convex powered descent guidance: AIAA-2020-0844[R]. Reston: AIAA, 2020.
143 HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems2021212: 106622.
144 GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM202063(11): 139-144.
Outlines

/